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Abstract

A program schema defines a class of programs, all of which have identical state-
ment structure, but whose expressions may differ. We define a class of syntactic
similarity binary relations between linear structured schemas, which characterise
schema equivalence for structured schemas that are linear, free and liberal. In this
paper we report that similarity implies equivalence for linear schemas, and that
a near-converse holds for schemas that are linear, free and liberal. We also show
that the similarity of two linear schemas is polynomial-time decidable. Our main
result considerably extends the class of program schemas for which equivalence is
known to be decidable, and suggests that linearity is a constraint worthy of further
investigation.
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1 Introduction

A program schema represents the statement structure of a program by replacing real
functions and predicates with function and predicate symbols taken from sets F and
P respectively. A schema S thus defines a whole class [S] of programs all of the
same structure. Each program in [S] can be obtained from S via a mapping called an
interpretation which gives meanings to the function and predicate symbols in S. As
an example, Figure 1 gives a schema S; and the program P of Figure 2 is in the class
[S].

The primary application of the theory of program schemas was as a framework for
investigating program transformations; in particular those used by compilers during
optimisation. If it could be proved that a certain transformation on schemas preserved
equivalence, then this transformation could certainly be safely applied to programs.
Surveys on the theory of program schemas can be found in the works of Greibach [1]
and Manna [2].

u := h();

if p(w) then v := f(u);

else v := g();

Fig. 1. Schema S

u := 1;

if w > 1 then v := u + 1;

else v := 2;

Fig. 2. Program P

This paper gives a class of schemas for which equivalence is decidable. Equivalence is
defined as follows. Given any variable v in a variable set V , we say that schemas S, T
are v-equivalent 1 , written S∼=v T, if given any interpretation and an initial state (that
is, a mapping from the set of variables into some fixed domain) the programs defined
by S and T give the same final value to the variable v, provided they both terminate.
We also define S∼=ω T to mean that given any interpretation and any initial state, the
programs defined by S and T either both terminate or both fail to terminate. Thus
the schema T of Figure 3 satisfies S∼=v T , with S as in Figure 1; but S∼=ω T does not

1 For the class of all schemas the relation ∼=v is not transitive, as an example in Section 3
shows, but it is an equivalence relation for the class of free, structured schemas (Proposition
19).
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while q(v) do v := k(v);

if p(w) then

{

u := h();

v := f(u);

}

else v := g();

Fig. 3. Schema T

hold. The relation ∼=V for V ⊆ V ∪ {ω} means the conjunction of the relations ∼=u

for all u ∈ V . We write ∼= (‘equivalence’) to mean ∼=V∪{ω} . Some researchers use the
phrase ‘functional equivalence’ to refer to the relation ∼=V∪{ω} and ‘weak equivalence’
for ∼=V .

This definition of equivalence takes no account of relations between the symbols, or
requirements that a function or predicate symbol have a certain meaning, although
definitions of equivalence for which interpretations are defined in this more restricted
way have been considered [3–5].

Traditionally schemas were defined using a set of labelled statements or equivalently a
flow diagram. All new results stated in this paper only concern structured schemas, 2

in which goto statements are forbidden, and predicate symbols are only used to
build if statements, of the form if q(u) then T1 else T2, or while statements, of the
formwhile p(u) do T ; where in both cases u is a finite tuple of variables.

It has been shown that it is decidable whether two structured schemas which are
Conservative, Free and Linear are equivalent [6]. The main result reported in this
paper is a strengthening of this result; that it can be decided in polynomial time
whether two structured schemas which are Liberal, Free and Linear (abbreviated
LFL in this paper), are equivalent.

The full statement of our main theorem involves the definition of a binary relation
similV on linear schemas for V ⊆ V∪{ω}. We report in this paper that S similu T ⇒
S∼=u T holds for linear schemas S, T and u ∈ V ∪ {ω}. There is a near-converse;
S ∼={v,ω} T ⇒ S simil{v,ω} T holds for every v ∈ V and LFL schemas S, T . The
proofs of both these results are given in the Technical Report [7, Theorem 148], on
account of their length. Since it can be decided in polynomial time whether S similu T
holds (Theorem 31), our main theorem follows.

2 Some authors, for example Manna [2] use the phrase while schema for what we call a
structured schema (except that Manna allows statements like while ¬p(u) do T ); in this
paper a while schema means a structured schema consisting of a while loop (Definition 3).
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1.1 Organisation of the paper

In Section 2 we give some background to the theory of schemas. In Section 3 we give
the basic schema definitions. We also give the formal definitions of free and liberal
schemas, and prove that variable equivalence is in fact an equivalence relation for the
class of free schemas. We also prove that it is decidable whether a schema is both
free and liberal. We then define syntactic relations between the symbols in a linear
schema which are required in the statement of the definition of similarity of linear
schemas. We then give this definition, and prove that it is decidable in polynomial
time whether two linear schemas are u-similar, given any u ∈ V ∪ {ω}. In Section 4
we give the definition of the slice of a schema, given by deleting statements from a
schema, and discuss conditions under which slicing preserves equivalence. In Section
5 we give the main theorem and discuss further possibilities for research.

2 Background to schema theory

2.1 Different classes of schemas

Many subclasses of schemas have been defined:

Linear schemas (Definition 4) in which each function and predicate symbol occurs
at most once. 3

Conservative schemas, in which every assignment is of the form
v := f(v1, . . . , vr) where v ∈ {v1, . . . , vr}.

Free schemas, (Definition 17) where all paths are executable under some interpre-
tation.

Liberal schemas (Definition 17) in which two assignments along any executable
path can always be made to assign distinct values to their respective variables.

The last three of these classes were first introduced by Paterson [8]. Of these con-
ditions, the first two can clearly be decided for the class of all schemas. Paterson
[8] also proved, using a reduction from the Post Correspondence Problem, that it is
not decidable whether a schema is free. He also showed however that it is decidable
whether a schema is both liberal and free; and since he also gave an algorithm for
transforming a schema S into a schema T such that T is both liberal and free if and
only if S is liberal, it is clearly decidable whether a schema is liberal. It is an open
problem whether freeness is decidable for the class of linear schemas.

3 Some authors use the phrase ‘non-repeating schemas’ to refer to what we call linear
schemas.

4



All results on the decidability of equivalence of schemas are either negative or confined
to very restrictive classes of schemas. In particular Paterson [8] proved, in effect, that
equivalence is undecidable for the class of all (unstructured) schemas. He proved this
by showing that the halting problem for Turing machines (which is, of course, unde-
cidable) is reducible to the equivalence problem for the class of all schemas. Ashcroft
and Manna showed [9] that an arbitrary schema can be effectively transformed into an
equivalent structured schema, provided that statements such as while ¬p(u) do T are
permitted; hence Paterson’s result shows that any class of schemas for which equiv-
alence can be decided must not contain this class of schemas. Thus in order to get
positive results on this problem, it is clearly necessary to define the relevant classes
of schema with great care.

Although the class of linear structured schemas considered in this paper is a highly
restrictive one, it has the merit that schemas in this class are the main objects studied
in the field of Program Slicing (which is discussed in Section 2.3), and that this is
therefore a particularly important class.

2.2 Positive results on the decidability of schema equivalence

Besides the result of [6] mentioned above, positive results on the decidability of equiv-
alence of schemas include the following; in an early result in schema theory, Ianov [10]
introduced a restrictive class of schemas, the Ianov schemas, for which equivalence is
decidable. Ianov schemas are monadic (that is, they contain only a single variable)
and all function symbols are unary; hence Ianov schemas are conservative.

Paterson [8] proved that equivalence is decidable for a class of schemas called pro-
gressive schemas, in which every assignment references the variable assigned by the
previous assignment along every legal path.

Sabelfeld [11] proved that equivalence is decidable for another class of schemas called
through schemas. A through schema satisfies two conditions: firstly, that on every path
from an accessible predicate p to a predicate q which does not pass through another
predicate, and every variable x referenced by p, there is a variable referenced by q
which defines a term containing the term defined by x, and secondly, distinct variables
referenced by a predicate define distinct terms under any Herbrand interpretation
(Definition 9).

2.3 Relevance of schema theory to program slicing

Our interest in the theory of program schemas is motivated in part by applications in
program slicing. Slicing has many applications including program comprehension [12],
software maintenance [13], [14], [15], [16], debugging [17], [18], [19], [20], testing [21],
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[22], [23], re-engineering [24], [25], component reuse [26], [27], program integration [28],
and software metrics [29], [30], [31]. There are several surveys of slicing techniques,
applications and variations [32], [33], [34]. All applications of slicing rely on the fact
that a slice is faithful to a projection of the original program’s semantics, yet it is
typically a smaller program.

The field of (static) program slicing is largely concerned with the design of algorithms
which given a program and a variable v, eliminate as much code as possible from
the program, such that the program (slice) consisting of the remaining code, when
executed from the same initial state, will still give the same final value for v as the
original program, and preserve termination. One algorithm is thus better than another
if it constructs a smaller slice.

Slicing algorithms do not normally take account of the meanings of the functions and
predicates occurring in a program, nor do they ‘know’ when the same function or
predicate occurs in more than one place in a program. In effect, therefore, they work
with a linear schema defined by the program, and the semantic properties which slices
of programs are required to preserve are defined in terms of schema semantics. This
motivates the study of schemas, which represent large classes of programs.

Weiser [35] showed that given a program and a variable v, there was a particular set
of functions and predicates (corresponding to our set NS(v) for schemas in Definition
29) which may affect the final value of v; the symbols not lying in this set may simply
be deleted without affecting the final value of v. In Theorem 33 we generalise this by
considering ω-equivalence as a slicing criterion. In [36] it was shown that if S is LFL
then none of the symbols in NS(u) (for u ∈ V ∪ {ω}) can be deleted from S without
giving a u-inequivalent schema. This is however false for the class of schemas which
are merely linear and free; a counterexample is given in Figure 6 in Section 5.1.

3 Basic definitions

Definition 1 (symbol sets) Throughout this paper, F , P and V denote fixed infi-
nite sets of function symbols, of predicate symbols and of variables respectively. We
assume a function

arity : F ∪ P → N.

The arity of a symbol x is the number of arguments referenced by x. We assume that
for each n ∈ N there are infinitely many elements of F and P of arity n, so we never
run out of symbols of any required arity. Note that in the case when the arity of a
function symbol g is zero, g may be thought of as a constant.

Definition 2 (terms) The set Term(F ,V) of terms is defined as follows:

• each variable is a term,
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• if f ∈ F is of arity n and t1, . . . , tn are terms then f(t1, . . . , tn) is a term.

If each term ti is a variable, then f(t1, . . . , tn) is called a function expression.
We refer to a tuple t = (t1, . . . , tn), where each ti is a term, as a vector term. We call
p(t) a predicate term if p ∈ P and the number of components of the vector term t is
arity(p). If each component of t is a variable, then p(t) is called a predicate expression.

Definition 3 (structured schemas) We define the set Sch(F ,P ,V) of all struc-
tured schemas recursively as follows. The empty schema Λ ∈ Sch(F ,P ,V). An assign-
ment y := f(x); where y ∈ V , and f(x) is a function expression, lies in Sch(F ,P ,V).
From these all schemas in Sch(F ,P ,V) may be ‘built up’ from the following constructs
on schemas.

• Sequences; S ′ = U1U2 . . . Ur ∈ Sch(F ,P ,V) provided that each schema

U1, . . . , Ur ∈ Sch(F ,P ,V).

We define SΛ = ΛS = S for all schemas S.
• If schemas; S ′′ = if p(x) then {T1} else {T2} lies in Sch(F ,P ,V) whenever p(x) is a

predicate expression and T1, T2 ∈ Sch(F ,P ,V).
• While schemas; S ′′′ = while q(y) do {T} lies in Sch(F ,P ,V) whenever q(y) is a

predicate expression and T is a schema.

The predicate symbols p and q are called the guards of the schemas S ′′ and S ′′′,
respectively.
Finally, |S| will denote the total number of function and predicate symbols in S, with
n distinct occurrences of the same symbol counting n times.

Thus a schema is a word in a language over an infinite alphabet, for which Λ is the
empty word. We normally omit the braces { and } if this causes no ambiguity. Also,
we may write if p(x) then {T1} instead of
if p(x) then {T1} else {T2} if T2 = Λ.

Observe that f(x) and p(x) in Definition 3 are always function and predicate expres-
sions ; that is, the components of the vector term x are variables.

For the remainder of this paper, the word ‘schema’ is intended to mean ‘structured
schema’.

The sets of if and while predicate symbols occurring in a schema S are denoted by
ifPreds(S) and whilePreds(S); their union is Preds(S). We define Funcs(S) ⊆ F to
be the set of function symbols in S and define Symbols (S) = Funcs(S)∪Preds(S). A
schema without predicates is called predicate-free; a schema without while predicates
is called while-free.

Definition 4 (linear schemas) If no element of F ∪ P appears more than once in
a schema S, then S is said to be linear. If a linear schema S contains an assignment
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y := f(x); then we define assignS(f) = y and refvecS(f) = x. If p ∈ Preds(S) then
refvecS(p) is defined similarly.

3.1 Paths through a schema

The execution of a program defines a (possibly infinite) sequence of assignments
and predicates. Each such sequence will correspond to a path through the associated
schema. The set Πω(S) of paths through S is now given.

Definition 5 (the set alphabet(S) and the set Πω(S) of paths through S) If σ
is a word, or a set of words over an alphabet, then pre(σ) is the set of all prefixes of
(elements of) σ. If L is any set, then we write L∗ for the set of finite words over L
and Lω for the set containing both finite and infinite words over L, and we write Λ
to refer to the empty word; recall that Λ is also a particular schema.
For each schema S the alphabet of S, written alphabet(S) is defined by

alphabet(S) = A ∪B

where

A = {y := f(x)| y := f(x); is an assignment in S},
B = {<p(x) = Z> | p(x) is a predicate expression in S, Z ∈ {T, F}}.

For any letter l ∈ alphabet(S), we define symbol(l) ∈ Symbols (S) to be f if l is
an assignment with function symbol f , and p if l is <p(x) = Z > for Z ∈ {T, F}.
The words in Π(S) ⊆ (alphabet(S))∗ are formed by concatenation from the words of
subschemas as follows:

For Λ,

Π(Λ) = {Λ}.
For assignments,

Π(y := f(x); ) = {y := f(x)}.

For sequences, Π(S1S2 . . . Sr) = Π(S1) . . . Π(Sr).

For if schemas, Π( if p(x) then {T1} else {T2}) is the set of all concatenations of
<p(x) = T> with a word in Π(T1) and all concatenations of <p(x) = F> with a
word in Π(T2).

For while schemas, Π(while q(y) do {T}) is the set of all words of the form

[<q(y) = T> Π(T )]∗ <q(y) = F>

8



where [<q(y) = T > Π(T )]∗ denotes a finite sequence of words which are the
concatenation of <q(y) = T> with a word from Π(T ).

We define the set Πω(S) of paths through S as

Πω(S) = Π(S) ∪ {σ ∈ (alphabet(S))ω − (alphabet(S))∗| pre(σ)− {σ} ⊆ pre(Π(S))}.

When referring to a linear schema S, we will sometimes omit the reference to refvecS(p)
for p ∈ Preds(S) when denoting elements of alphabet(S); that is, we will write
<p = Z> to refer to <p(x) = Z>. Since the schema S is linear, this is unambiguous.

Lemma 6 Let S be a schema.

(1) If σ ∈ pre(Π(S)), the set {l ∈ alphabet(S)|σl ∈ pre(Π(S))} is one of the follow-
ing; the empty set, a singleton containing an assignment, or a pair
{<p(x) = T>,<p(x) = F>} where p ∈ Preds(S).

(2) An element of Π(S) cannot be a strict prefix of another.

Proof. Both assertions follow by induction on |S|. �

Lemma 6 reflects the fact that at any point in the execution of a program, there is
never more than one ‘next step’ which may be taken.

Definition 7 (paths passing through a symbol) We say that a path σ ∈ Πω(S)
passes through a function symbol f (or a predicate p) if it contains an assignment
with function symbol f (or <p(x) = Z> for Z ∈ {T, F}). We may strengthen this by
saying that σ passes through an element l ∈ alphabet(S) if l occurs in σ.

Definition 8 (segments of a schema and of segments) Let S be a schema and
let µ ∈ alphabet(S)∗. We say that µ is a
segment (in S) if there are words µ1, µ2 such that µ1µµ2 ∈ Π(S). If µ, σ are segments
in S, then we say that µ is a segment of σ in S if we can write σ = µ1µµ2.
We say that a segment µ starts (ends) at x ∈ Symbols (S) if x̃ ∈ alphabet(S) is the
first (last) letter of µ, with x = symbol(x̃).

3.2 Semantics of structured schemas

The symbols upon which schemas are built are given meaning by defining the notions
of a state and of an interpretation. It will be assumed that ‘values’ are given in a
single set D, which will be called the domain. We are mainly interested in the case in
which D = Term(F ,V) (the Herbrand domain) and the function symbols represent
the ‘natural’ functions with respect to Term(F ,V).
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Definition 9 (states, (Herbrand) interpretations and the natural state e)
Given a domain D, a state is either ⊥ (in the case of non-terminating programs)
or a function V → D. The set of all such states will be denoted by State(V , D).
An interpretation i defines, for each function symbol f ∈ F of arity n, a function
f i : Dn → D, and for each predicate symbol p ∈ P of arity m, a function pi : Dm →
{T, F}. The set of all interpretations with domain D will be denoted Int(F ,P , D).
When the domain used is Term(F ,V), an interpretation i is said to be Herbrand if
the functions f i : Term(F ,V) → Term(F ,V) for each f ∈ F are defined as

f i(t1, . . . , tn) = f(t1, . . . , tn)

for all n-tuples of terms (t1, . . . , tn).
In the case when the domain is Term(F ,V), the natural state e : V → Term(F ,V) is
defined by e(v) = v for all v ∈ V .

Note that an interpretation i being Herbrand places no restriction on the mappings
pi : (Term(F ,V))m → {T, F} defined by i for each p ∈ P .
It is well known [2, Section 4-14] that Herbrand interpretations, on the domain of
terms, are the only ones that need to be considered when considering equivalence of
schemas. This fact is stated more precisely in Theorem 16.

A program is obtained from a schema S and an interpretation i by replacing all
symbols f ∈ F and p ∈ P in S by f i and pi; and given an initial state d ∈ State(V , D),
this program defines a final state

M[[S]]id ∈ State(V , D)

in the obvious way, which will be given formally in Definition 13. (If the program fails
to terminate for an initial state d, or if d = ⊥, then we define M[[S]]id = ⊥.)

Given a schema S ∈ Sch(F ,P ,V) and a domain D, an initial state d ∈ State(V , D)
with d 6= ⊥ and an interpretation i ∈ Int(F ,P , D) we now define the final state
M[[S]]id ∈ State(V , D) and the associated path πS(i, d) ∈ Πω(S).

Definition 10 (the schema schema(σ)) Given a word σ ∈ (alphabet(S))∗, the
predicate-free schema schema(σ) consists of all the assignments along σ in the same
order as in σ; and schema(σ) = Λ if σ has no assignments.

Definition 11 (semantics of predicate-free schemas) Given a state d 6= ⊥, the
final state M[[S]]id and associated path πS(i, d) ∈ Πω(S) of a schema S are defined as
follows:

For Λ,

M[[Λ]]id = d

and
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πΛ(i, d) = Λ.

For assignments,

M[[y := f(x);]]id(v) =

d(v) if v 6= y,

f i(d(x)) if v = y

(where d(x1, . . . , xr) is defined to be the tuple (d(x1), . . . , d(xr)))
and

πy := f(x);(i, d) = y := f(x),

and for sequences S1S2 of predicate-free schemas,

M[[S1S2]]
i
d = M[[S2]]

i
M[[S1]]i

d

and
πS1S2(i, d) = πS1(i, d)πS2(i,M[[S1]]

i
d).

This uniquely defines M[[S]]id and πS(i, d) if S is predicate-free.

In order to give the semantics of a general schema S, first the path, πS(i, d), of S with
respect to interpretation, i, and initial state d is defined.

Definition 12 (the path πS(i, d)) Given a schema S, an interpretation i, and a
state, d 6= ⊥, the path πS(i, d) ∈ Πω(S) is defined by the following condition; for all
σ <p(x) = X> ∈ pre(πS(i, d)), the equality pi(M[[schema(σ)]]id(x)) = X holds.

In other words, the path πS(i, d) has the following property; if a predicate expression
p(x) along πS(i, d) is evaluated with respect to the predicate-free schema consisting
of the sequence of assignments preceding that predicate in πS(i, d), then the value of
the resulting predicate term given by i ‘agrees’ with the value given in πS(i, d).

By Lemma 6, this defines the path πS(i, d) ∈ Πω(S) uniquely.

Definition 13 (semantics of arbitrary schemas) If πS(i, d) is finite, we define

M[[S]]id = M[[schema(πS(i, d))]]id

(which is already defined, since schema(πS(i, d)) is predicate-free) otherwise πS(i, d)
is infinite and we define M[[S]]id = ⊥. In this last case we may say that M[[S]]id is
not terminating. For convenience, if S is predicate-free and d : V → Term(F ,V) is
a state then we define unambiguously M[[S]]d = M[[S]]id. Also, for schemas S, T and
interpretations i and j we write M[[S]]id(ω) = M[[T ]]jd(ω) to mean M[[S]]id = ⊥ ⇐⇒
M[[T ]]jd = ⊥.

Observe that M[[S1S2]]
i
d = M[[S2]]

i
M[[S1]]i

d
and

πS1S2(i, d) = πS1(i, d)πS2(i,M[[S1]]
i
d)
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hold for all schemas (not just predicate-free ones).

Definition 14 (termination from the natural state e) If M[[S]]ie 6= ⊥, then we
say that i is a terminating interpretation for S.

Definition 15 (u-equivalence of schemas) Given any u ∈ V ∪ {ω}, we say that
schemas S, T ∈ Sch(F ,P ,V) are u-equivalent, written S∼=u T, if for every domain
D and state d : V → D and every i ∈ Int(F ,P , D), the following holds; either
u ∈ V ∧ ⊥ ∈ {M[[S]]id,M[[T ]]id}, or

M[[S]]id(u) = M[[T ]]id(u).

If V ⊆ V ∪ {ω}, we write S∼=V T to mean S∼=u T ∀u ∈ V and we write S∼= T to
mean S∼=V∪{ω} T .

Theorem 16, which is a restatement of [2, Theorem 4-1], ensures that we may assume
that D is always the Herbrand domain and d = e in Definition 15; hence we only need
to consider Herbrand interpretations.

Theorem 16 Let Ω be a set of schemas in Sch(F ,P ,V), let D be a domain, let d ∈ D
and let i ∈ Int(F ,P , D). Then there is a Herbrand interpretation j such that for all
S ∈ Ω, πS(j, e) = πS(i, d) holds.

Throughout the remainder of the paper, all interpretations will be assumed to be
Herbrand.

3.3 Free and liberal schemas

Definition 17 Let S ∈ Sch(F ,P ,V).

• If for every σ ∈ pre(Π(S)) there is a Herbrand interpretation i such that σ ∈
pre(πS(i, e)), then S is said to be free.

• If for every prefix σ = µ <y := f(a)> ν <z := g(b)> ∈ pre(Π(S)) such that there
is a Herbrand interpretation i such that σ ∈ pre(πS(i, e)), we have

M[[schema(µ)]]e(f(a)) 6= M[[schema(µ <y := f(a)> ν)]]e(g(b)),

then S is said to be liberal. (If f 6= g then of course this condition is trivially
satisfied.)

Thus a schema S is said to be free if for every path through S, there is a Herbrand
interpretation which follows it with the natural state e as the initial state, and a
schema S is said to be liberal if given any path through S passing through two
assignments and a Herbrand interpretation which follows it with e as the initial state,
the assignments give distinct values to the variables to which they assign.
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Observe that if a schema S is free, and

µ <p(x) = X> µ′ <p(y) = ¬X> ∈ pre(πS(i, e))

for some Herbrand interpretation i, then

M[[schema(µ)]]e(x) 6= M[[schema(µµ′)]]e(y)

holds, since otherwise there would be no Herbrand interpretation whose path (for e)
has the prefix µ <p(x) = X> µ′ <p(y) = ¬X>. Thus a path through a free schema
cannot pass twice (for initial state e) through the same predicate term.

As mentioned in the introduction, it was proved in [8] that it is decidable whether a
schema is liberal, or liberal and free. Theorem 18 gives the essential result for linear
schemas.

Theorem 18 (syntactic condition for being liberal and free)
Let S be a linear schema. Then S is both liberal and free if and only if for every
segment x̃µỹ in S with x̃, ỹ ∈ alphabet(S), symbol(x̃) = symbol(ỹ) and such that the
same symbol does not occur more than once in x̃µ or µỹ, then the segment x̃µ contains
an assignment to a variable referenced by ỹ.
In particular, it is decidable whether a linear schema is both liberal and free.

Proof [8]. Assume that S is both liberal and free. Then for any segment x̃µỹ satisfying
the conditions given, there is a prefix Θ and an interpretation i such that Θx̃µỹ ∈
pre(πS(i, e)), and distinct (predicate) terms are defined when x̃ and ỹ are reached,
thus proving the condition.
To prove sufficiency, first observe that the ‘non-repeating’ condition on the letters of
the segments x̃µ and µỹ may be ignored, since segments that begin and end with letters
having the same symbol can be removed from within x̃µ or µỹ until it is satisfied.
Consider the set of prefixes of Π(S) of the form Θx̃µỹ with symbol(x̃) = symbol(ỹ) such
that x̃µỹ satisfies the condition given. By induction on the length of such prefixes, it
can be shown that every assignment encountered along such a prefix defines a different
term (for initial state e), and the result follows immediately from this.
Since there are finitely many segments in S which contain no repeated symbols except
at the endpoints, and these can be enumerated, the decidability of liberality and
freeness for the set of linear schemas follows easily. �

Theorem 18 can easily be generalised to apply to arbitrary unstructured schemas; we
state it in restricted form in order to simplify the notation used.

Clearly the relation ∼=ω is an equivalence relation. For the relation ∼=v with v ∈ V
we have the following result.

Proposition 19 (transitivity of ∼=v for free schemas) Let v ∈ V; then the rela-
tion ∼=v is an equivalence relation when restricted to the class of free schemas.
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Proof. Only transitivity is at issue. Suppose S ′∼=v S ′′ and S ′′∼=v S ′′′ hold for free
schemas S ′, S ′′, S ′′′. Let i be an interpretation and assume that

⊥ /∈ {M[[S ′]]ie,M[[S ′′′]]ie}

holds. Let the interpretation j map every predicate term p(t) to F unless πS′(i, e) or
πS′′′(i, e) passes through p(t), in which case let pj(t) = pi(t). Thus M[[S ′]]ie = M[[S ′]]je
and M[[S ′′′]]ie = M[[S ′′′]]je hold and j maps finitely many predicate terms to T, hence
M[[S ′′]]je 6= ⊥ holds. Thus

M[[S ′]]je(v) = M[[S ′′]]je(v) = M[[S ′′′]]je(v)

holds, giving the result. �

Proposition 19 is false for the set of all linear schemas. To see this, consider the three
linear schemas

S ′ = if p(u) then v := f1();
else v := g();

S ′′ = while p(u) do Λ;
v := g();

S ′′′ = if p(u) then v := f2();
else v := g();

of which S ′′ is not free. Clearly S ′∼=v S ′′ and S ′′∼=v S ′′′ hold, but not S ′∼=v S ′′′.

We will henceforth refer to a schema which is liberal, free and linear as an LFL schema.

3.4 Subschemas of linear schemas

The subschemas of a schema are defined as follows; the empty sequence Λ is a sub-
schema of every schema; if S ∈ Sch(F ,P ,V) is an assignment or Λ then the only
subschemas of S are S itself and Λ; the subschemas of the schema U1 . . . Ur are those
of each Uj for 1 ≤ j ≤ r and also the schemas UiUi+1 . . . Uj for i ≤ j; the subschemas
of S ′′ = if p(x) then {T1} else {T2} are S itself and those of T1 and T2; the subschemas
of S ′′′ = while q(y) do {T} are S ′′′ itself and those of T . The subschemas T1 and T2

of S ′′ are called the true and false parts of p (or of S ′′). In the while schema the
subschema T is called the body of q (or of S ′′′).

Definition 20 (the subschemas S(p), partXS (p) and bodyS(p)) Let S be a linear
schema. If p ∈ Preds(S) then we sometimes write S(p) for the while or if subschema
of S of which p is the guard.
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Also, if p ∈ ifPreds(S) and X ∈ {T, F} then we may write partXS (p) for the X-part
of p in S.
If p ∈ whilePreds(S) then bodyS(p) is the body of p in S.

Definition 21 (the ↘S ‘lying below’ relation, ‘immediately below’) Let S be
a linear schema. If p ∈ Preds(S), we write p ↘S x to mean x ∈ Symbols (bodyS(p)) if
p ∈ whilePreds(S) and x ∈ Symbols (partTS(p)) ∪ Symbols (partFS(p)) if p ∈ ifPreds(S).
We may strengthen this to p ↘S x (X) to mean that either x ∈ Symbols (partXS (p))
(if p ∈ ifPreds(S)), or x ∈ Symbols (bodyS(p)) (if X = T and p ∈ whilePreds(S)).
Also, if A ⊆ Symbols (S), then we say that A lies immediately below S (or equivalently,
S lies immediately above A) if A ⊆ Symbols (S) and there is no p ∈ whilePreds(S)
such that A ⊆ Symbols (bodyS(p)). In this case, if S = bodyT (q) for some linear schema
T and q ∈ whilePreds(T ), we may also say that A lies immediately below q in T .

Definition 22 (main subschemas of a linear schema) Let S be a linear schema.
The set of main subschemas of S contains S itself and the bodies of all while sub-
schemas of S.

Observe that there is exactly one main subschema of a linear schema S lying imme-
diately above a set A ⊆ Symbols (S).

3.5 Data dependence relations

Definition 23 (the  S ‘data dependence’ relation) Let S be a linear schema.
We write f  S x for f ∈ Funcs(S), x ∈ Symbols (S) if there is a segment f̃σx̃ in
S such that f̃ is an assignment to f and x̃ ∈ alphabet(S) satisfies symbol(x̃) = x,
and there is no assignment to the variable assignS(f) along σ. We call f̃σx̃ an fx-
segment in this case. We generalise this by defining f  S v for f ∈ Funcs(S), v ∈ V
if f  S w := g(v); g holds for any linear schema S w := g(v);, in which case we define
an fv-segment in S to be any segment σ of S such that σ w := g(v) is an fg-segment
in the schema S w := g(v);. Lastly, we write v  S x for v ∈ V , x ∈ Symbols (S) if
h  v := h(); S x holds for any linear schema v := h(); S, in which case we define a vx-
segment in S to be any σ ∈ pre(Π(S)) such that v := h() σ is an hx-segment in the
schema v := h(); S.
In all cases, we may strengthen the relation x S y by writing x S y (n) for n ∈ N
if either y ∈ V or the nth component of refvecS(y) is x or assignS(x).

Thus f  S x holds for f ∈ Funcs(S), x ∈ Symbols (S) if and only if there exists a
path in S along which a (predicate) term x(t) such that t has a component f(t′) is
created; and we may define an fx-segment to be any segment in S which ‘witnesses’
such a creation. Similar characterisations can be given for the statements f  S v and
v  S x for v ∈ V .
As an example, if T is the linear schema of Figure 3, the relations v  T q, k  T q,
v  T k, k  T k (but not k  T v), w  T p, h T f , h T u, f  T v, and g  T v
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while p(v) do

{

u := g(v);

v := f();

}

Fig. 4. backS(p, f, g) holds here

hold.
Note that the relation  S denotes a purely syntactic property of a linear schema S;
f  S x may hold even if there is no interpretation defining a path passing through
the fx-segment whose existence is asserted.

3.6 Other relations between schema symbols

Definition 24 gives three relations which strengthen the data dependence relation.

Definition 24 (the outif, thru and back relations) Let S be a linear
schema and let x ∈ F ∪V and y ∈ F ∪P ∪V . Let p ∈ P . Assume that x S y holds.
Then we make the following definitions.

• If p ∈ whilePreds(S) and both x and y are symbols in bodyS(p) but ¬(x bodyS(p) y)
holds (a backward data dependence) then we write backS(p, x, y).

• If Y ∈ {T, F} and p ∈ ifPreds(S) and x ∈ Funcs(partYS (p)) and ¬(x  partYS (p)

y)∨(y ∈ V) holds, then we write outif S(p, Y, x, y). If Y ∈ {T, F} and p ∈ ifPreds(S)
and neither x nor y is a symbol in either of the schemas partTS(p) or partFS(p) and
every xy-segment contains the letter <p = Y >, then we write thruS(p, Y, x, y).
(Note that thruS(p, Y, x, p) is always false.)

As an example, backS(p, f, g) holds if S is the linear schema in Figure 4.

Definition 25 (q-competing function symbols and variables) Let S be a lin-
ear schema and assume that f  S x (n) and g  S x (n) for f, g, x ∈ Symbols (S) ∪ V
and n ∈ N. Let q ∈ ifPreds(S). We say that f and g are q-competing for x in
S if for {X, Y } = {T, F}, we have both outif S(q, X, f, x) ∨ thruS(q, X, f, x) and
outif S(q, Y, g, x) ∨ thruS(q, Y, g, x).

Thus f and g are p-competing for v in the schemas of Figures 1 and 5. Proposition
26 shows that if thruS(p, Y, x, y) holds for suitable p, Y, x, y then outif S(p,¬Y, f ′, y)
holds for some function symbol f ′.

Proposition 26 (connection between outif S and thruS) Let S be a linear
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schema and assume that thruS(p, Y, x, y) holds for some p ∈ ifPreds(S), Y ∈ {T, F}
and x, y ∈ Symbols (S) ∪ V. Assume that x  S y (n) holds for n ∈ N. Then every
path in Π(part¬Y

S (p)) passes through some f ′ ∈ F satisfying outif S(p,¬Y, f ′, y) and
f ′  S y (n).

Proof. We may assume that x ∈ F holds, otherwise we may replace S with a linear
schema x := f(); S. Since thruS(p, Y, x, y) holds, there is an xy-segment γ = µ <p =
Y > µ′µ′′ in S with µ′ ∈ Π(partYS (p))) and µ′′ 6= Λ. We may assume that p occurs
only once in the segment γ; otherwise we could delete a segment from within γ. Let
σ ∈ Π(part¬Y

S (p)). The segment µ <p = ¬Y > σµ′′ does not enter the Y -part of p
and so is not an xy-segment, by the definition of thruS(p, Y, x, y). Thus the variable
assigned by x is ‘killed’ along σ, giving the result. �

Definition 27 (the aboveS function) Let S be a linear schema and let x be a sym-
bol in S. If x lies immediately below S, then we define aboveS(x) = x; otherwise we
define aboveS(x) to be the while predicate lying immediately below S and containing
x in its body.

Definition 28 (the <<S relation) Let S be a linear schema and let

{x, y} ⊆ Symbols (S).

Assume that S lies immediately above the set {x, y}. We define x <<S y if aboveS(x) 6=
aboveS(y) and there is a segment in S which begins at aboveS(x) and ends at aboveS(y).

Observe the following; if x <<S y then every segment in S which begins at x and
ends at y passes through every occurrence of x before any occurrence of y, and x
and y do not lie in opposite parts of any if predicate. Also, <<S is transitive; and
x <<S y ∧ y <<S x never holds, since otherwise S would contain a while predicate
containing both aboveS(x) and aboveS(y) in its body.
It can be shown (see [7, Lemma 134]) that if backS(q, f, x) holds for q ∈ whilePreds(S),
then ¬(f <<bodyS(q) x) holds.

u := h();

v := f(u);

if p(w) then Λ

else v := g();

Fig. 5. thruS(p, T, f, v) ∧ outif S(p, F, g, v) holds here

17



3.7 The NS and InvS sets

The symbol and variable sets of Definition 29 are purely syntactically defined, and
contain all the symbols and (initial) variables which can influence the final value of a
variable. This is stated precisely in Theorem 33.

Definition 29 (symbols needed by variables) Let S be a linear schema and let
u ∈ {ω} ∪ V . Then we define the set NS(u) to be the minimal subset of Symbols (S)
satisfying the following closure conditions; if f ∈ F , x ∈ (V ∩ {u}) ∪ NS(u) and
f  S x then f ∈ NS(u); and if u = ω then whilePreds(S) ⊆ NS(u); and if p ↘S x
for x ∈ NS(u) then p ∈ NS(u).
We also define InvS(u) ⊆ V to contain all variables v satisfying v  S v if v = u ∈ V
or v  S y for some y ∈ NS(u).
We generalise this by defining NS(V ) = ∪u∈VNS(u) for a set V , and similarly with
InvS.

The functions NS, InvS have more restricted domains in Definition 29 above than in
[7, Definition 35], in which NS(x) and InvS(x) for x ∈ Symbols (S) are also defined.

Note that NS(y) is a set of symbols of S, whereas InvS(y) is a subset of V .

It can easily be proved that if v ∈ V and a linear schema S = AB, then InvS(v) =
InvA(InvB(v)).

Observe that if any of the relations given in Definition 24 hold, and y ∈ NS(u) for
some u ∈ V ∪ {ω}, then x ∈ NS(u) holds; in the case that thruS(p, Y, x, y) holds, this
follows from Proposition 26.

3.8 Definition of u-similar and u-congruent linear schemas

Definition 30 (u-similar and u-congruent linear schemas) Let S, T be linear
schemas and let u ∈ {ω} ∪ V . Then S similu T (S is u-similar to T ) if and only if the
following hold:

(1) NS(u) = NT (u);
(2) NS(u) ∩ ifPreds(S) = NT (u) ∩ ifPreds(T );
(3) NS(u) ∩ whilePreds(S) = NT (u) ∩ whilePreds(T );
(4) f  S x (n)∧x ∈ NS(u) ⇐⇒ f  T x (n)∧x ∈ NT (u), for all f ∈ F and n ≥ 1;
(5) f  S u ⇐⇒ f  T u if u ∈ V and f ∈ F ;
(6) v  S x (n) ⇐⇒ v  T x (n) for all v ∈ V and x ∈ NS(u) and n ≥ 1;
(7) q ↘S p (Z) ⇐⇒ q ↘T p (Z) if u = ω and p ∈ whilePreds(S) and q is any

predicate and Z ∈ {T, F};
(8) Symbols (bodyS(p)) ∩NS(u) = Symbols (bodyT (p)) ∩NT (u) if p ∈ whilePreds(S);
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(9) backS(p, f, x) ∧ x ∈ NS(u) ⇐⇒ backT (p, f, x) ∧ x ∈ NT (u);
(10) If q ∈ ifPreds(S) and Z ∈ {T, F} and f ∈ F and x ∈ NS(u) ∪ (V ∩ {u}) then

outif S(q, Z, f, x) ∨ thruS(q, Z, f, x) ⇐⇒ outif T (q, Z, f, x) ∨ thruT (q, Z, f, x);

(11) If f, f ′ ∈ F and f, f ′  S x (r) for x ∈ NS(u)∪({u}∩V), and r ∈ N, and S̄, T̄ are
the main subschemas of S and T respectively lying immediately above {f, f ′},
then either ¬(f <<S̄ f ′ ∧ f ′ <<T̄ f) holds, or there exists q ∈ ifPreds(S) such
that f and f ′ are q-competing for x in S;

(12) If p ∈ whilePreds(S), f ∈ F and f  S x ∧ x ∈ NS(u) and v = assignS(f) and
w = assignT (f), then

f  bodyS(p) v ∧ v  bodyS(p) x

⇐⇒
f  bodyT (p) w ∧ w  bodyT (p) x

holds.
(13) If p ∈ whilePreds(S), q ∈ ifPreds(S), f ∈ Funcs(S), x ∈ NS(u), Z ∈ {T, F} and

f  S x, with v = assignS(f) and w = assignT (f) and v  bodyS(p) x, then

outif bodyS(p)(q, Z, f, v) ∨ thrubodyS(p)(q, Z, f, v)

⇐⇒
outif bodyT (p)(q, Z, f, w) ∨ thrubodyT (p)(q, Z, f, w)

holds.

If S similu T and also refvecS(x) = refvecT (x) for all x ∈ NS(u) and assignS(f) =
assignT (f) for all f ∈ NS(u)∩F , then we say that S and T are u-congruent, written
Scongu T .

We also write S similV T to mean that S similu T for all u ∈ V , and S simil T to mean
that S similV∪{ω} T holds. Also ScongV T has a similar meaning.

Observe that the two linear predicate-free schemas

u := f();

v := g(u);

and

u′ := f();

v := g(u′);

are v-similar but not v-congruent if u 6= u′; thus congruence is a stronger condition
than similarity.
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Informally, for two linear structured schemas S, T to satisfy S similu T , the following
must hold;

• S and T have the same set of u-needed function symbols, if predicate symbols and
while predicate symbols. (Conditions (1), (2), (3) of S similu T ).

• S and T have the same data dependence relations among those symbols in NS(u).
(Conditions (4), (5),(6) of S similu T ).

• S and T have the same set of u-needed symbols lying in the body of each while
predicate (Condition (8) of S similu T ). If u = ω a weaker statement also holds for
while predicates lying under if predicates (Condition (7) of S similu T ).

• Also, the bodies of while predicates in S and T satisfy the same data dependence
conditions between symbols lying in NS(u) (Conditions (9), (12) of S similu T ).

• Conditions (10), (11) and (13) of S similu T are a kind of counterpart for function
symbols lying under if predicates to Condition (8) for symbols lying under while
predicates, showing that change of ordering with respect to <<S of function symbols
(as with f, g in the v-equivalent schemas given in Figures 1 and 5) can only occur
in connection with an if predicate.

Theorem 31 (S similu T is decidable in polynomial time) Given linear schemas
S and T and u ∈ V ∪{ω}, it is decidable in polynomial time whether S similu T holds.

Proof. Given a linear schema S, encoded as indicated in Definition 3, with the braces
{ }, the truth of the relations p ↘S x (Z) for each p ∈ Preds(S), x ∈ Symbols (S),
Z ∈ {T, F} can be established in polynomial time. Given two elements v, w ∈ alphabet(S),
with symbols v′, w′, we can decide in polynomial time whether w occurs immediately
after v in any word in Π(S), since this holds if and only if either w′ occurs after v′ in
S without there being any other symbol between them, and p ↘S v′ ⇐⇒ p ↘S w′

for all p ∈ whilePreds(S), or v′ ∈ whilePreds(S) and v′ lies immediately above w′ and
there are no symbols occurring after v′ in S before the closing brace } defined by v′.
Thus we can construct in polynomial time a directed graph GS, whose vertices are the
elements of alphabet(S) and such that there is an edge from vertex v to w in the graph
GS if and only if w occurs immediately after v in a word in Π(S). Given f ∈ Funcs(S)
and x ∈ Symbols (S), we can establish whether f  S x holds by deleting all vertices
in GS that are assignments to assignS(f) except the one with function symbol f or x,
if x ∈ F , and edges adjacent to deleted vertices, and establishing whether the letter
containing x is reachable from the f -assignment in the resulting directed graph. This
latter problem is well-known to be polynomial-time decidable in the size of GS. The
values of n for which f  S x (n) also holds can also be easily established, as can
the truth of the assertions v  S x (n) for v ∈ V and f  S u. Also, the truth of the
relations aboveS and <<S for appropriate arguments can be decided in polynomial
time by studying S. Having obtained this information, we can test the truth of the
relations backS, outif S, thruS (and hence the q-competing condition) for appropriate
arguments. By comparing this information with that obtained from T and the graph
GT , it can be decided in polynomial time whether S and T satisfy S similu T . �
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4 Slices of schemas

An important special case of the equivalence problem for schemas S, T is that in which
T is a slice of S.

Definition 32 A slice of a structured schema S may be obtained recursively by the
following rules;

• if S = S1S2S3 then S1S3, S1S2 and S2S3 are slices of S;
• if T ′ is a slice of T then while p(u) do T ′ is a slice of while p(u) do T ;
• if T ′ is a slice of T then the if schema if q(u) then S else T ′ is a slice of

if q(u) then S else T (the true and false parts may be interchanged in this example);
• a slice of a slice of S is itself a slice of S.

The following facts are easily proved. All slices of a linear schema are also linear. If a
set Σ ⊆ Symbols (S) (for linear S) satisfies (x ∈ Σ ∧ p ↘S x) ⇒ p ∈ Σ, then there is
a unique slice T of S satisfying Symbols (T ) = Σ; the slice T can be obtained from S
by successively removing all assignments whose function symbols do not lie in Σ, and
every if and while subschema of S whose guard does not lie in Σ.
A special case is given by Σ = NS(V ) for V ⊆ V ∪ {ω}. In this case every slice T of
S containing all symbols in NS(V ) satisfies InvT (V ) = InvS(V ) and ScongV T , since
deletion from S of symbols not lying in NS(V ) does not affect the schema properties
defining these statements. We will show in Part (2) of Theorem 33 that S∼=V T also
holds.

A slice of an LFL schema need not be free or liberal; for example, the schema
while p(v) do Λ, which is not free, is a slice of the LFL schema below;

while p(v) do

{

u := h(u);

w := k(u);

v := g(v);

}

Also, deleting the assignment u := h(u); gives a schema which is free but not liberal.
However the slice of an LFL schema S which contains precisely the symbols in NS(V )
for any V ⊆ V is itself LFL; this follows from Theorem 18 and the ‘backward data
dependence’ property of NS(V ).

Theorem 33 was proved by Weiser in [35] for the case u ∈ V , using different terminol-
ogy.
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Theorem 33 Let S be a (not necessarily free or liberal) linear schema and let T be
a slice of S. Let u ∈ V ∪ {ω}, let i, j be interpretations differing only on predicates
not lying in NS(u), and let c, d be states such that c(v) = d(v) for all v ∈ InvS(u).
Assume that T contains every symbol of NS(u).

(1) If Symbols (T ) = NS(u), then M[[S]]ic 6= ⊥ ⇒ M[[T ]]jd 6= ⊥.
(2) If u ∈ V and M[[S]]ic and M[[T ]]jd both terminate, then M[[S]]ic(u) = M[[T ]]jd(u);

and if u = ω then M[[S]]ic 6= ⊥ ⇐⇒ M[[T ]]jd 6= ⊥.

In particular, S∼=u T holds.

Proof. This is proved in [7, Theorem 42]. �

Part (1) of Theorem 33 may fail for a slice T whose symbol set strictly contains NS(u);
for example, if S is

v = f();
while p(v) do Λ

and T is the slice

while p(v) do Λ

for a variable v 6= u. If the interpretation i maps every predicate term p(t) to T unless
t = f() then M[[S]]ie terminates whereas M[[T ]]ie does not.

5 The Main Theorems and Further Directions

Our main result consists of the following two Theorems.

Theorem 34 Let u ∈ V ∪ {ω} and let S and T be u-similar linear schemas. Then S
and T are u-equivalent.

Proof. This is proved in [7, Theorem 55]. �

Theorem 35 Let S, T be LFL schemas. Then

S∼= T ⇐⇒ S simil T

holds. If V ⊆ V ∪ {ω} and ω ∈ V then

S∼=V T ⇐⇒ S similV T

holds. In particular, it is decidable in polynomial time whether S and T are equivalent.
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Proof. The first assertion is a special case of the second (where V is the set containing
all variables assigned in either S or T , plus ω).
The statement S similu T ⇒ S∼=u T for any u ∈ V∪{ω}, is Theorem 34; S similV T ⇒
S∼=V T for any set V ⊆ V ∪ {ω} follows immediately from this result. The proof of
the converse statement for sets V containing ω is given as part of [7, Theorem 148].
The polynomial time bound follows from Theorem 31. �

An overview of the full proof of Theorem 35 is given in [7, Section 1.2].

Of the various related problems which seem worth studying (besides the ‘missing’result
S∼=v T ⇒ S simil v T for v ∈ V , which we have failed to prove), two strike us as being
particularly promising.

5.1 Computing minimal slices of schemas

For the purpose of program slicing, given a schema S and variable u, it is of interest to
be able to compute those minimal slices of S (with minimality defined by symbol sets)
which are v-equivalent to S and which preserve termination. By Part (1) of Theorem
33 and [7, Theorem 76], it follows that for any u ∈ V , the minimal slice T of an LFL
schema S such that S∼=u T and M[[S]]jd 6= ⊥ ⇒M[[T ]]jd 6= ⊥ always holds is precisely
the slice of S such that Symbols (T ) = NS(u) holds. The first author has proved in
[37] that this also holds if the linearity hypothesis is replaced by function-linearity
(a schema is function-linear if it does not contain more than one occurrence of the
same function symbol), provided that the definition of NS(u) is generalised to allow
for multiple occurrences of predicate symbols.

If S is merely free and linear then S∼=u T need not imply Symbols (T ) ⊇ NS(u), as
the example of Figure 6 shows. Owing to the constant g-assignment, S is not liberal,
though it is free. Clearly f ∈ NS(u) holds, but the slice of S obtained by deleting the
f -assignment, which is also free, is u-equivalent to S. It is also ω-equivalent to S, and
hence satisfies the termination requirement for slices.

It would be of interest to find a method of computing the minimal slice of S satisfying
these conditions under weaker hypotheses than the assumption that S is liberal, free
and function-linear.

5.2 Using schema transformations to construct equivalent schemas

Given a linear schema S and u ∈ V ∪ {ω}, it can be shown using Theorem 34 that
the following transformations of S preserve u-equivalence.

• Changing the variables mentioned in S in any way that preserves u-similarity.
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while q(v) do

{

v := k(v);

w := h(w);

if p(w) then

{

u := g();

w := f(w);

}

else Λ

}

Fig. 6. Deleting the f -assignment gives a u-equivalent slice of this schema

• Replacing S by a slice T of S, such that T contains every element of NS(u).
• Pulling out a subschema from an if subschema of S; that is, replacing a subschema

if p(v) then S1S2

else S3

of S by the schema

S1

if p(v) then S2

else S3

provided that this does not create a new fx-segment µ for f ∈ Funcs(S1) and
x ∈ NS(u)∪{u} such that either x = p or µ passes through <p = F>. Also, if u = ω
then S1 must not contain a while predicate, otherwise Condition (7) of similu is
violated. Clearly the true and false parts of p may be interchanged.

• Changing the order of ‘towers’ of if predicates; that is, interchanging p(u) and q(v)
in a subschema

24



if p(u) then

{

if q(v) then T

else Λ

}

else Λ

of S. Again, the true and false parts of p or q may be interchanged.
• Replacing a subschema S1S2 of S by S2S1 to give a schema T , provided that no

variable is assigned in both S1 and S2, and S1S2 contains no fx-segment with
f ∈ Funcs(S1) and x ∈ Symbols (S2), and the same statement holds with (S, 1, 2)
replaced by (T, 2, 1).

We conjecture that given any LFL schema S and u ∈ V ∪ {ω}, all u-similar LFL
schemas can be obtained from S by a sequence of these transformations and their
inverses.
It may also be possible to prove that given an LFL schema S, any u-equivalent LFL
schema may be reached from S by a finite sequence of such transformations without
using Theorem 35, thus giving an alternative (and possibly shorter) way of proving
this theorem than the one we have given in the Technical Report [7].
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