Towards Decidability of Freeness

Sebastian Danicic

February 2, 2007

 QQ

Sebastian Danicic () [Towards Decidability of Freeness](#page-60-0) February 2, 2007 1/32

 \leftarrow

A Schema is Free if and only if it has no repeating predicate terms.

 2990

4 0 8

A Schema is not free if and only if it has repeating predicate terms.

 2990

Sebastian Danicic () [Towards Decidability of Freeness](#page-0-0) February 2, 2007 2 / 32

4 0 8

In order to decide freeness we look for repeating predicate terms. If we find one then it's not free and if there isn't one then it's free.

 Ω

∢⊡

We decided to consider simple case first. The simplest case is schemas with no variables.

 QQ

∢⊡

A schema with no variables is free if and only if it contains no loops.

 QQ

4日)

Freeness is decidable for schemas with no variables.

 QQ

∢⊡

A schema with one variable is free if and only if for every loop body S

- Every path through S contains a non–constant assignment to the variable.
- No path through S contains a constant assignment to the variable.

Alternatively, thinking of a path as a state function:

Lemma

A schema with one variable, x is free if and only if for every loop body, S every path through S maps x to a 'proper' term containing x .

 Ω

Alternatively, thinking of a path as a state function:

Lemma

A schema with one variable, x is free if and only if for every loop body, S every path through S maps x to a 'proper' term containing x .

A proper term is a term that isn't a variable

Decidability of Freeness of Schemas with exactly one variable

Lemma

Freeness is decidable for schemas with exactly one variable.

 QQ

Sebastian Danicic () [Towards Decidability of Freeness](#page-0-0) February 2, 2007 9 / 32

∢⊡

Definition

A predicate p is free if and only if there are no paths which give rise to repeated predicate terms containing p.

Definition

A set of variables, V repeats at point p means there is a path where all the variables in V have the same value at more than one occurrence of p .

A Schema is free if and only if it is free with respect to all its predicate symbols.

 QQ

4 0 8

A predicate $p(V)$ is free if and only if the set of variables V does not repeat at p.

 QQ

4 0 8

 \sim **SECTION**

Definition

Let p be a predicate or function symbol. A p -cycle is a path from p to p containing no intermediate occurrences of p.

 QQ

4 0 8

Variable set V repeats at p if and only if there is a composition of p-cycles whose state function is σ , say, such that $(\sigma \circ \sigma) \upharpoonright V = \sigma \upharpoonright V$.

 QQ

K ロ ▶ K 何 ▶

Represent the schema as a "labelled directed graph" where the nodes are the predicates and the arcs are labelled with the 'variable set abstracted' state functions which takes us from one predicate to the next.

 Ω

4日 8

- Represent the schema as a "labelled directed graph" where the nodes are the predicates and the arcs are labelled with the 'variable set abstracted' state functions which takes us from one predicate to the next.
- Compute the "closure" of this graph.

ຕα

while $p1(x)$ { $x=f(y);$ if $p2(x,y)$ $y=g(y)$ else while $p3(x)$ { $x=h(x,y)$ } }

4 0 8

 \rightarrow \oplus \rightarrow \rightarrow Ξ ×

Þ

 299

4 0 8

SEC

∢ ⁄ਾ

つへへ

∍

Analyse the Graph

 \leftarrow

 \sim

4 ଲ \rightarrow

∍

To decide whether p repeats we look at all the p -cycles. Constants are very useful:

 QQ

4 0 8

To decide whether p repeats we look at all the p -cycles. Constants are very useful:

Definition

Given some state functions, $\{\sigma_i\}$, variable x is constant variable with respect to the $\{\sigma_i\}$ iff one of the σ_i maps x to a term with no variables or a term containing only variables which are mapped to themselves (unchanged) in all the $\{\sigma_i\}$.

 Ω

To decide whether p repeats we look at all the p -cycles. Constants are very useful:

Definition

Given some state functions, $\{\sigma_i\}$, variable x is constant variable with respect to the $\{\sigma_i\}$ iff one of the σ_i maps x to a term with no variables or a term containing only variables which are mapped to themselves (unchanged) in all the $\{\sigma_i\}$.

Definition

Given some state functions, $\{\sigma_i\}$, term t is constant with respect to the $\{\sigma_i\}$ iff all the variables it contains are constant w.r.t the $\{\sigma_i\}$.

Let $p(V)$ be a predicate. p does not repeat if and only if there exists a composition of p-cycles which maps each v in V either to itself or to a constant.

つくい

4 0 8

Let $p(V)$ be a predicate. p does not repeat if and only if there exists a composition of p-cycles

which maps each v in V either to itself or to a constant.

This one is important can we argue about it please?

つくい

4 D F

Given a term t , we can define the flattened equivalence class $[t]$ to be the set of all terms which mention exactly the same symbols and variables as t.

つくい

 \leftarrow

Given a term t, we can define the flattened equivalence class $[t]$ to be the set of all terms which mention exactly the same symbols and variables as t.

Example of terms in the same flattened equivalence class:

Given a term t , we can define the flattened equivalence class $[t]$ to be the set of all terms which mention exactly the same symbols and variables as t. Example of terms in the same flattened equivalence class:

 $f(x,y)$

Given a term t, we can define the flattened equivalence class $[t]$ to be the set of all terms which mention exactly the same symbols and variables as t. Example of terms in the same flattened equivalence class:

 $f(x,y)$ $f(f(x,y),y)$

Given a term t, we can define the flattened equivalence class $[t]$ to be the set of all terms which mention exactly the same symbols and variables as t. Example of terms in the same flattened equivalence class: $f(x,y)$

```
f(f(x,y),y)f(f(f(x,y),y),y))
```


Given a term t, we can define the flattened equivalence class $[t]$ to be the set of all terms which mention exactly the same symbols and variables as t. Example of terms in the same flattened equivalence class:

```
f(x,y)f(f(x,y),y)f(f(f(x,y),y),y)f(y,x)
```
Similarly, given any state σ , we can define the flattened equivalence class [σ] to the set of all states τ such that for all variables v, $[\tau v] = [\sigma v]$.

つくい

€⊡

Similarly, given any state σ , we can define the flattened equivalence class [σ] to the set of all states τ such that for all variables v, $[\tau v] = [\sigma v]$. Example of states in the same flattened equivalence class:

Similarly, given any state σ , we can define the flattened equivalence class [σ] to the set of all states τ such that for all variables v, $[\tau v] = [\sigma v]$. Example of states in the same flattened equivalence class: $\{x \rightarrow f(x, y), y \rightarrow y\}$

Similarly, given any state σ , we can define the flattened equivalence class [σ] to the set of all states τ such that for all variables v, $[\tau v] = [\sigma v]$. Example of states in the same flattened equivalence class:

$$
\begin{aligned} \{x \to f(x, y), y \to y\} \\ \{x \to f(f(x, y), y), y \to y\} \end{aligned}
$$

Similarly, given any state σ , we can define the flattened equivalence class [σ] to the set of all states τ such that for all variables v, $[\tau v] = [\sigma v]$. Example of states in the same flattened equivalence class:

$$
\begin{aligned} \{x \to f(x, y), y \to y\} \\ \{x \to f(f(x, y), y), y \to y\} \\ \{x \to (f(f(x, y), y), y \to y\} \end{aligned}
$$

Definition

Given two sets Σ_1 , Σ_2 of states, we define

$$
\Sigma_1 \circ \Sigma_2 = \{ \sigma_1 \circ \sigma_2 | \; (\sigma_1,\sigma_2) \in \Sigma_1 \times \Sigma_2 \}
$$

$$
\sum_{\pmb{\cdot}}
$$

 299

 \leftarrow \Box

 $[\sigma] \circ [\tau] \subseteq [\sigma \circ \tau]$

∍

 QQ

Sebastian Danicic () [Towards Decidability of Freeness](#page-0-0) February 2, 2007 23 / 32

 \leftarrow

∍

 $[\sigma] \circ [\tau] \subseteq [\sigma \circ \tau]$

So, when composing two states and flattening the result, any representative from the same equivalence class is as good as any other.

If term t is constant with respect to $\{\sigma_1,\cdots,\sigma_n\}$ then for all τ_i in $[\sigma_i]$, t is constant with respect to $\{\tau_1, \cdots \tau_n\}$.

 QQ

4 0 8

Definition

Let $\Sigma = \{\sigma_1, \cdots, \sigma_n\}$ be a set of states. Then Σ^* is the set of all possible compositions of the elements of Σ .

 QQ

Let $\Sigma = {\sigma_1, \cdots, \sigma_n}$ be a set of states. Then there exists a finite set S of states such that $[S] = [\Sigma^*]$. We call S a finite representation for Σ^* .

つくい

4 **E** >

Let $\Sigma = {\sigma_1, \cdots, \sigma_n}$ be a set of states. There exists an algorithm for finding a finite representation for Σ^* .

Let $\Sigma = {\sigma_1, \cdots, \sigma_n}$ be a set of states. There exists an algorithm for finding a finite representation for Σ^* .

$i=1$

0: list $m=$ nil:

1: Generate all the compositions of length i

2: For each of these, add it to m if there isnt already a state in m which is equivalent to it.

 $3: i = i + 1$

4:go to 1

 QQ

Let $\Sigma = {\sigma_1, \cdots, \sigma_n}$ be a set of states. There exists an algorithm for finding a finite representation for Σ^* .

$i=1$

0: list $m=$ nil:

1: Generate all the compositions of length i

2: For each of these, add it to m if there isnt already a state in m which is equivalent to it.

 $3: i = i + 1$

4:go to 1

The proof follows because flattening is preserved by composition.

We only need to consider finitely many p-cycles to decide freeness.

Proof: Follows from the Repeating Claim and the Flattening Conjecture.

つくい

4 **E** >

 \bullet Consider each predicate p in turn.

 QQ

 \leftarrow

- \bullet Consider each predicate p in turn.
- \bullet For each predicate p, work out the finite representation for the set of states for each inner loop containing p.

 QQ

- \bullet Consider each predicate p in turn.
- \bullet For each predicate p, work out the finite representation for the set of states for each inner loop containing p.
- Replace each inner loop with this finite representation and work outwards.

- \bullet Consider each predicate p in turn.
- \bullet For each predicate p, work out the finite representation for the set of states for each inner loop containing p.
- Replace each inner loop with this finite representation and work outwards.
- When there are no loops left we will end up with a finite representation for the p cycles.

ຕα

- \bullet Consider each predicate p in turn.
- \bullet For each predicate p, work out the finite representation for the set of states for each inner loop containing p.
- Replace each inner loop with this finite representation and work outwards.
- When there are no loops left we will end up with a finite representation for the p cycles.
- \bullet Check whether the variables in p repeat.

ຕα

Questions? Cuonter–examples?

 299

Þ

4.

Kロト K同下

Definition

A state function "increases x " if it maps x to a proper term containing x .

 QQ

4日)

Let $p(V)$ be a predicate. If for all p-cycles, σ , σ increases v for some v in V , then p does not repeat.

 QQ

 \leftarrow

Let $p(V)$ be a predicate. If for all p-cycles, σ , σ increases v for some v in V , then p does not repeat.

```
Wrong! Consider:
while p1(x,y){
  if p2(x,y)y=g()x=f(x)else
    x=h()y=k(y)}
```
€⊡

 QQ