
Towards Decidability of Freeness

Sebastian Danicic

February 2, 2007

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 1 / 32



Freeness

A Schema is Free if and only if it has no repeating predicate terms.

A Schema is not free if and only if it has repeating predicate terms.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 2 / 32



Freeness

A Schema is Free if and only if it has no repeating predicate terms.

A Schema is not free if and only if it has repeating predicate terms.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 2 / 32



Decidability of Freeness

In order to decide freeness we look for repeating predicate terms. If we
find one then it’s not free and if there isn’t one then it’s free.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 3 / 32



Decidability of Freeness

We decided to consider simple case first.
The simplest case is schemas with no variables.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 4 / 32



Schemas with no variables

Lemma

A schema with no variables is free if and only if it contains no loops.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 5 / 32



Decidability of Freeness for Schemas with no variable

Lemma

Freeness is decidable for schemas with no variables.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 6 / 32



Schemas with exactly one variable

Lemma

A schema with one variable is free if and only if for every loop body S

Every path through S contains a non–constant assignment to the
variable.

No path through S contains a constant assignment to the variable.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 7 / 32



Schemas with exactly one variable

Alternatively, thinking of a path as a state function:

Lemma

A schema with one variable, x is free if and only if for every loop body, S
every path through S maps x to a ‘proper’ term containing x.

A proper term is a term that isn’t a variable

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 8 / 32



Schemas with exactly one variable

Alternatively, thinking of a path as a state function:

Lemma

A schema with one variable, x is free if and only if for every loop body, S
every path through S maps x to a ‘proper’ term containing x.

A proper term is a term that isn’t a variable

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 8 / 32



Decidability of Freeness of Schemas with exactly one
variable

Lemma

Freeness is decidable for schemas with exactly one variable.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 9 / 32



Freeness of a particular predicate symbol p

Definition

A predicate p is free if and only if there are no paths which give rise to
repeated predicate terms containing p.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 10 / 32



Repeating Sets of Variables at point p

Definition

A set of variables, V repeats at point p means there is a path where all
the variables in V have the same value at more than one occurrence of p.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 11 / 32



Freeness

Lemma

A Schema is free if and only if it is free with respect to all its predicate
symbols.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 12 / 32



Freeness

Lemma

A predicate p(V ) is free if and only if the set of variables V does not
repeat at p.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 13 / 32



p-Cycles

Definition

Let p be a predicate or function symbol. A p-cycle is a path from p to p
containing no intermediate occurrences of p.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 14 / 32



Repeating Lemma

Lemma

Variable set V repeats at p if and only if there is a composition of p-cycles
whose state function is σ, say, such that (σ ◦ σ) � V = σ � V .

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 15 / 32



An Informal Idea

Represent the schema as a “labelled directed graph” where the nodes
are the predicates and the arcs are labelled with the ‘variable set
abstracted’ state functions which takes us from one predicate to the
next.

Compute the “closure” of this graph.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 16 / 32



An Informal Idea

Represent the schema as a “labelled directed graph” where the nodes
are the predicates and the arcs are labelled with the ‘variable set
abstracted’ state functions which takes us from one predicate to the
next.

Compute the “closure” of this graph.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 16 / 32



Example

while p1(x)
{

x=f(y);
if p2(x,y)

y=g(y)
else while p3(x)

{
x=h(x,y)

}
}

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 17 / 32



Example

while p1(x)
{

x=f(y);
if p2(x,y)

y=g(y)
else while p3(x)

{
x=h(x,y)

}
}

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 17 / 32



Example

while p1(x)
{

x=f(y);
if p2(x,y)

y=g(y)
else while p3(x)

{
x=h(x,y)

}
}

Analyse the Graph

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 17 / 32



Example

while p1(x)
{

x=f(y);
if p2(x,y)

y=g(y)
else while p3(x)

{
x=h(x,y)

}
}

Its not free because p1 repeats. (p1 p2 p3 p1)

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 17 / 32



Example

while p1(x)
{

x=f(y);
if p2(x,y)

y=g(y)
else while p3(x)

{
x=h(x,y)

}
}

p2 also repeats. (p2 p3 p1 p2)

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 17 / 32



Example

while p1(x)
{

x=f(y);
if p2(x,y)

y=g(y)
else while p3(x)

{
x=h(x,y)

}
}

anything else?

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 17 / 32



Example

while p1(x)
{

x=f(y);
if p2(x,y)

y=g(y)
else while p3(x)

{
x=h(x,y)

}
}

p3(x) also repeats (p3 p1 p2 p3)

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 17 / 32



Constants

To decide whether p repeats we look at all the p-cycles. Constants are
very useful:

Definition

Given some state functions, {σi}, variable x is constant variable with
respect to the {σi} iff one of the σi maps x to a term with no variables or
a term containing only variables which are mapped to themselves
(unchanged) in all the {σi}.

Definition

Given some state functions, {σi}, term t is constant with respect to the
{σi} iff all the variables it contains are constant w.r.t the {σi}.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 18 / 32



Constants

To decide whether p repeats we look at all the p-cycles. Constants are
very useful:

Definition

Given some state functions, {σi}, variable x is constant variable with
respect to the {σi} iff one of the σi maps x to a term with no variables or
a term containing only variables which are mapped to themselves
(unchanged) in all the {σi}.

Definition

Given some state functions, {σi}, term t is constant with respect to the
{σi} iff all the variables it contains are constant w.r.t the {σi}.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 18 / 32



Constants

To decide whether p repeats we look at all the p-cycles. Constants are
very useful:

Definition

Given some state functions, {σi}, variable x is constant variable with
respect to the {σi} iff one of the σi maps x to a term with no variables or
a term containing only variables which are mapped to themselves
(unchanged) in all the {σi}.

Definition

Given some state functions, {σi}, term t is constant with respect to the
{σi} iff all the variables it contains are constant w.r.t the {σi}.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 18 / 32



Repeating Claim

Lemma

Let p(V ) be a predicate.
p does not repeat if and only if there exists a composition of p-cycles
which maps each v in V either to itself or to a constant.

This one is important can we argue about it please?

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 19 / 32



Repeating Claim

Lemma

Let p(V ) be a predicate.
p does not repeat if and only if there exists a composition of p-cycles
which maps each v in V either to itself or to a constant.

This one is important can we argue about it please?

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 19 / 32



Flattened Terms

Given a term t, we can define the flattened equivalence class [t] to be the
set of all terms which mention exactly the same symbols and variables as
t.

Example of terms in the same flattened equivalence class:
f(x,y)
f(f(x,y),y)
f(f(f(x,y),y),y)
f(y,x)

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 20 / 32



Flattened Terms

Given a term t, we can define the flattened equivalence class [t] to be the
set of all terms which mention exactly the same symbols and variables as
t.
Example of terms in the same flattened equivalence class:

f(x,y)
f(f(x,y),y)
f(f(f(x,y),y),y)
f(y,x)

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 20 / 32



Flattened Terms

Given a term t, we can define the flattened equivalence class [t] to be the
set of all terms which mention exactly the same symbols and variables as
t.
Example of terms in the same flattened equivalence class:
f(x,y)

f(f(x,y),y)
f(f(f(x,y),y),y)
f(y,x)

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 20 / 32



Flattened Terms

Given a term t, we can define the flattened equivalence class [t] to be the
set of all terms which mention exactly the same symbols and variables as
t.
Example of terms in the same flattened equivalence class:
f(x,y)
f(f(x,y),y)

f(f(f(x,y),y),y)
f(y,x)

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 20 / 32



Flattened Terms

Given a term t, we can define the flattened equivalence class [t] to be the
set of all terms which mention exactly the same symbols and variables as
t.
Example of terms in the same flattened equivalence class:
f(x,y)
f(f(x,y),y)
f(f(f(x,y),y),y)

f(y,x)

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 20 / 32



Flattened Terms

Given a term t, we can define the flattened equivalence class [t] to be the
set of all terms which mention exactly the same symbols and variables as
t.
Example of terms in the same flattened equivalence class:
f(x,y)
f(f(x,y),y)
f(f(f(x,y),y),y)
f(y,x)

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 20 / 32



Flattened States

Similarly, given any state σ, we can define the flattened equivalence class
[σ] to the set of all states τ such that for all variables v , [τv ] = [σv ].

Example of states in the same flattened equivalence class:
{x → f (x , y), y → y}
{x → f (f (x , y), y), y → y}
{x → (f (f (x , y), y), y → y}

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 21 / 32



Flattened States

Similarly, given any state σ, we can define the flattened equivalence class
[σ] to the set of all states τ such that for all variables v , [τv ] = [σv ].
Example of states in the same flattened equivalence class:

{x → f (x , y), y → y}
{x → f (f (x , y), y), y → y}
{x → (f (f (x , y), y), y → y}

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 21 / 32



Flattened States

Similarly, given any state σ, we can define the flattened equivalence class
[σ] to the set of all states τ such that for all variables v , [τv ] = [σv ].
Example of states in the same flattened equivalence class:
{x → f (x , y), y → y}

{x → f (f (x , y), y), y → y}
{x → (f (f (x , y), y), y → y}

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 21 / 32



Flattened States

Similarly, given any state σ, we can define the flattened equivalence class
[σ] to the set of all states τ such that for all variables v , [τv ] = [σv ].
Example of states in the same flattened equivalence class:
{x → f (x , y), y → y}
{x → f (f (x , y), y), y → y}

{x → (f (f (x , y), y), y → y}

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 21 / 32



Flattened States

Similarly, given any state σ, we can define the flattened equivalence class
[σ] to the set of all states τ such that for all variables v , [τv ] = [σv ].
Example of states in the same flattened equivalence class:
{x → f (x , y), y → y}
{x → f (f (x , y), y), y → y}
{x → (f (f (x , y), y), y → y}

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 21 / 32



Composing Sets of States

Definition

Given two sets Σ1, Σ2 of states, we define

Σ1 ◦ Σ2 = {σ1 ◦ σ2| (σ1, σ2) ∈ Σ1 × Σ2}

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 22 / 32



Flattening is presevered by Composition

Lemma

[σ] ◦ [τ ] ⊆ [σ ◦ τ ]

So, when composing two states and flattening the result, any
representative from the same equivalence class is as good as any other.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 23 / 32



Flattening is presevered by Composition

Lemma

[σ] ◦ [τ ] ⊆ [σ ◦ τ ]

So, when composing two states and flattening the result, any
representative from the same equivalence class is as good as any other.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 23 / 32



Flattening Conjecture

Lemma

If term t is constant with respect to {σ1, · · · , σn} then for all τi in [σi ], t
is constant with respect to {τ1, · · · τn}.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 24 / 32



The Closure of a set of States

Definition

Let Σ = {σ1, · · · , σn} be a set of states. Then Σ∗ is the set of all possible
compositions of the elements of Σ.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 25 / 32



Finite Representations

Lemma

Let Σ = {σ1, · · · , σn} be a set of states. Then there exists a finite set S
of states such that [S ] = [Σ∗].
We call S a finite representation for Σ∗.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 26 / 32



Finite Representations for Finite Sets are Computable

Lemma

Let Σ = {σ1, · · · , σn} be a set of states.
There exists an algorithm for finding a finite representation for Σ∗.

i=1
0: list m=nil;
1:Generate all the compositions of length i
2: For each of these, add it to m if there isnt already a state in m which is
equivalent to it.
3:i=i+1
4:go to 1
The proof follows because flattening is preserved by composition.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 27 / 32



Finite Representations for Finite Sets are Computable

Lemma

Let Σ = {σ1, · · · , σn} be a set of states.
There exists an algorithm for finding a finite representation for Σ∗.

i=1
0: list m=nil;
1:Generate all the compositions of length i
2: For each of these, add it to m if there isnt already a state in m which is
equivalent to it.
3:i=i+1
4:go to 1

The proof follows because flattening is preserved by composition.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 27 / 32



Finite Representations for Finite Sets are Computable

Lemma

Let Σ = {σ1, · · · , σn} be a set of states.
There exists an algorithm for finding a finite representation for Σ∗.

i=1
0: list m=nil;
1:Generate all the compositions of length i
2: For each of these, add it to m if there isnt already a state in m which is
equivalent to it.
3:i=i+1
4:go to 1
The proof follows because flattening is preserved by composition.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 27 / 32



Flattened States Claim

Lemma

We only need to consider finitely many p-cycles to decide freeness.

Proof: Follows from the Repeating Claim and the Flattening Conjecture.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 28 / 32



An Algorithm for Deciding Freeness

Consider each predicate p in turn.

For each predicate p, work out the finite representation for the set of
states for each inner loop containing p.

Replace each inner loop with this finite representation and work
outwards.

When there are no loops left we will end up with a finite
representation for the p cycles.

Check whether the variables in p repeat.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 29 / 32



An Algorithm for Deciding Freeness

Consider each predicate p in turn.

For each predicate p, work out the finite representation for the set of
states for each inner loop containing p.

Replace each inner loop with this finite representation and work
outwards.

When there are no loops left we will end up with a finite
representation for the p cycles.

Check whether the variables in p repeat.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 29 / 32



An Algorithm for Deciding Freeness

Consider each predicate p in turn.

For each predicate p, work out the finite representation for the set of
states for each inner loop containing p.

Replace each inner loop with this finite representation and work
outwards.

When there are no loops left we will end up with a finite
representation for the p cycles.

Check whether the variables in p repeat.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 29 / 32



An Algorithm for Deciding Freeness

Consider each predicate p in turn.

For each predicate p, work out the finite representation for the set of
states for each inner loop containing p.

Replace each inner loop with this finite representation and work
outwards.

When there are no loops left we will end up with a finite
representation for the p cycles.

Check whether the variables in p repeat.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 29 / 32



An Algorithm for Deciding Freeness

Consider each predicate p in turn.

For each predicate p, work out the finite representation for the set of
states for each inner loop containing p.

Replace each inner loop with this finite representation and work
outwards.

When there are no loops left we will end up with a finite
representation for the p cycles.

Check whether the variables in p repeat.

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 29 / 32



The End!

Questions? Cuonter–examples?

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 30 / 32



Increases

Definition

A state function “increases x” if it maps x to a proper term containing x .

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 31 / 32



Lemma

Lemma

Let p(V ) be a predicate. If for all p-cycles, σ, σ increases v for some v in
V , then p does not repeat.

Wrong! Consider:
while p1(x,y)
{

if p2(x,y)
y=g()
x=f(x)

else
x=h()
y=k(y)

}

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 32 / 32



Lemma

Lemma

Let p(V ) be a predicate. If for all p-cycles, σ, σ increases v for some v in
V , then p does not repeat.

Wrong! Consider:
while p1(x,y)
{

if p2(x,y)
y=g()
x=f(x)

else
x=h()
y=k(y)

}

Sebastian Danicic () Towards Decidability of Freeness February 2, 2007 32 / 32


	Introduction

