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Abstract—The concept of community structure arises from the
analysis of social networks in sociology. Community structure can
be found in many real world graphs other than social networks.

We provide empirical evidence that dependence between
statements in software also gives rise to community structure.
This leads to the introduction of the concept of dependence
communities in software. We give examples which suggest that
the dependence communities reflect the semantic concerns of a
program.

Furthermore, we show that there is a strong correlation
between dependence communities and the previously studied
dependence clusters.

I. INTRODUCTION

Software systems can be modelled as complex networks
where vertices are typically components of a system and edges
represent dependencies or interactions between components
[55]. There a many different types of relationships in software
including class or object dependence graphs, call graphs
and package dependence graphs. Software graphs have been
shown to have the non-trivial topological features of complex
networks, such as a scale-free degree distribution, the small-
world property and community structure [38, 42, 48, 52].

The problem of clustering software components has long
been studied [30], for example the use of hill climbing [39] and
genetic algorithms [16] applied to software modules. Previous
research in the area has focused on the clustering of high-
level components in a software system to recover a modular
structure or re-modularise software. The Bunch tool [40, 41],
for example, works on a Module Dependency Graph (MDG)
which includes high-level system components such as Java
classes or C files that are connected due to dependence. The
purpose of the tool is to help maintain and understand existing
software by clustering related modules together.

A strict form of a type of dependence community in
software has previously been studied: a dependence cluster
[3, 4, 11, 33, 35, 36] is a maximal set of mutually dependent
program statements, or System Dependence Graph (SDG)
vertices. It has been shown [3] that large dependence clusters
may hinder software maintenance as a change in any of the
members in a dependence cluster could affect any other mem-
ber. Although some dependence clusters may naturally occur
in a program, unwanted dependence clusters may be the result
of bad programming practice which could be refactored away.
Binkley and Harman [3] use the term ‘dependence pollution’
for such unwanted and avoidable dependence clusters.

A. Community Structure

The concept of community structure arises from the analysis
of social networks in sociology [53]. Community structure
can be found in many real world graphs other than social
networks [47]. Random graphs, on the other hand, such as
those produced by the Erdős–Rényi model [17], do not exhibit
community structure.

Informally, a graph is said to have community structure
if vertices grouped into groups that are densely connected
internally, but sparsely connected to other groups [22]. A
community can also be described as a sub-graph which
is more tightly connected than average, i.e. cohesive [18].
Figure 1Community Structure is an example of a graph that
exhibits community structure; the graph contains three natural
communities.

Fig. 1: A graph, with highlighted communities. Q = 0.489.

B. Community Structure in Software

Community structure has previously been found to exist in
software networks. Šubelj and Bajec [51] found that Java class
dependency networks show a clear community structure and
that the detected communities do not exactly correspond to
defined packages.

Valverde and Solé [49] analysed class dependency networks
and found several highly frequent network motifs (sub-graphs
that exhibit certain connectivity patterns) that appear to be a
consequence of network heterogeneity and size, rather than as
a result of the functionality of software.

Paymal et al. [46] applied a community detection algorithm
to a class dependency network and examined changes in



communities of interacting classes, over different versions of
the software. The analysis showed that this technique provides
important insights in understanding how code evolves over
time.

This paper is the first to investigate community structure at
the statement-level in software.

C. The Structure of this paper

In section IICommunity Structure in Graphs we describe
modularity and the Louvain method used for community
detection.

In section IIIDependence Communities in Backward Slice
Graphs we introduce the notion of Backward Slice Graphs
(BSGs) and introduce the concept of a Dependence Commu-
nity by applying the Louvain method to BSGs.

In section IVEmpirical Study we report on an empirical
study that applied the Louvain method to the BSGs of 44
open-source programs. The result of the empirical study was
positive – each of the 44 BSGs exhibited community structure.
The analysis involved 464,621 lines of code and BSGs that
totalled 1,725,800 program slices.

In section VThe Semantic Nature of Dependence Commu-
nities we ask “what do dependence communities in software
mean?” A dependence community is a set of statements in a
program that have high dependence between them. It seems
plausible that such collections of statements will be part of
the same functional behaviour or semantics of the program.
We manually inspect a number of programs to confirm this
hypothesis.

In section VIDependence Communities vs Dependence
Clusters we compare dependence communities with the previ-
ously studied dependence clusters and show that dependence
communities give a stronger modularity i.e. the Louvain
method partitions the BSG into areas of ‘tighter’ dependence.
We show, however, that there is a strong correlation between
the size of the largest dependence community and the size of
the largest dependence cluster in a program.

In section VIIConclusion and Future Work, we conclude
by highlighting the high potential for future applications of
dependence communities in software.

II. COMMUNITY STRUCTURE IN GRAPHS

A. Modularity

Modularity is a measure of the quality of a particular
division of a network [43–45], calculated as:

Q =

(fraction of edges that
fall within

communities in the
given graph)

−
(expected number of
edges within those

communities in the null
model )

The value of the modularity lies in the range [−1, 1]. A
modularity greater than 0 means that the graph does exhibit
community structure. It is positive if the number of edges
within communities exceeds the number expected on the
basis of chance; the higher the modularity the stronger the
communities [13]. An un-partitioned graph (a graph of 1
community) always has a modularity of 0 and a graph where

each node is in its own community always has a negative
modularity.

Modularity, of a weighted undirected graph, is defined as

Q =
1

2m

∑
i,j

[
Aij − Eij

]
δ(ci, cj)

where Aij is the weight of the edge incident to i and j,
ki =

∑
j Aij is the sum of the weights of the edges incident

to vertex i, ci is the community to which vertex i is assigned,
δ(u, v) is the Kronecker δ-function so the value is 1 if
i and j are in the same community and 0 otherwise and
m = 1

2

∑
i,j Aij . Eij is the expected number of edges between

i and j in a chosen null model.
The null model used is based on the configuration model

[50] which is a randomised realisation of a particular graph
that retains the original degree distribution. Given a graph
where each vertex i has degree ki, each edge is divided into
two halves called stubs. Each stub is randomly connected to
one of the other ln−1 stubs resulting in a random graph with
the same degree distribution. The total number of stubs ln is∑n

k=1 ki = 2m.
In the null model a vertex can be attached to any other

vertex, by connecting two stubs together. The probability
pi of picking at random a stub attached to vertex i is ki

2m
since there are k stubs attached to i out of a total of 2m
stubs. The probability of a connection between i and j is
pipj =

kikj

4m2 since edges are placed independently of each
other. Therefore the expected number of edges Eij between i
and j is 2mpipj =

kikj

2m [20].
Modularity, can therefore be written as

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

The modularity for partition of the graph in fig. 1Commu-
nity Structure is 0.489, indicating a good community structure.

B. Community Detection

The Louvain method [12] is a fast algorithm for detect-
ing communities in large networks based upon modularity
maximisation. The algorithm combines neighbouring nodes
until a local maximum of modularity is reached and then
creates a new network of communities; these two steps are
repeated until there is no further increase in modularity. This
creates a hierarchical decomposition of the network - at the
lowest level all nodes are in their own community, and at the
highest level nodes are in communities which gives the highest
gain in modularity. This technique is simple, fast and has
good accuracy. It has been tested on networks with millions
of nodes/edges which is particularly important as software
systems can be large.

Modularity optimisation, in general, has the so-called reso-
lution limit problem where the modularity optimisation fails to
identify communities smaller than a certain scale [21]. Using
the Louvain method the problem is only partially relevant
because the algorithm provides a decomposition of the network



into communities for different levels of organization [12];
thus, in the resulting hierarchical community structure levels
in between the highest and lowest may contain communities
of interest.

The Louvain method is divided into two phases that are
repeated iteratively. Starting with a network with N nodes
we first put each node into it’s own community, giving N
communities of size 1. Then each neighbour j of vertex i
is considered and the gain in modularity after moving i to
the community of j is evaluated. Vertex i is placed into the
community that gives the greatest increase in modularity but
only if the increase is a positive value. If there is no positive
increase obtained by place i into the community of any of
it’s neighbours then i remains in it’s original community. This
process is repeated and applied sequentially for all vertices in
a randomised order until no further improvement in modular-
ity is possible. The second phase of the algorithm involves
building a new network whose vertices are the communities
discovered in the first phase. The weights of the edges between
two communities are the sum of the weights of the edges
between the vertices in the corresponding communities. After
the nodes have been combined into communities the first phase
can be re-applied to the new network.

The two phases are iterated until there are no more changes
and a maximum modularity is achieved.

III. DEPENDENCE COMMUNITIES IN BACKWARD SLICE
GRAPHS

Program slicing [1, 5, 6, 8, 9, 31, 37, 54] is a technique
which computes a set of program statements, known as a
slice, that may affect a point of interest known as the slicing
criterion.

Informally, a program P is sliced with respect to a slicing
criterion which is a pair (V, i) where V is a set of program
variables and i is a program point. The slice s of P is obtained
by removing statements from P such that s is semantically
equivalent to P with respect to the slicing criterion (V, i).

In this paper, we model the dependencies of a program as a
complex network using the notion of a BSG; we build BSGs
from SDGs using the mature and widely used CodeSurfer [26]
software.

An SDG [27, 34] is an inter-connected collection of Pro-
cedure Dependence Graphs (PDGs) [19]. The vertices of a
PDG represent the statements and predicates of a procedure;
the edges of an PDG represent the intra-procedural control and
data dependencies between statements and predicates. An SDG
connects a collection of PDGs by inter-procedural control and
data dependence edges.

Definition 1 (Backward Slice Graph (BSG)). A Backward
Slice Graph (BSG) G consists of a set of SDG vertices V
and a set of edges E of the form ei,j where ∀ei,j ∈ E, vj ∈
BackwardSlice(vi)

The corresponding BSGs were built from the set of back-
ward slices computed by CodeSurfer for each vertex in a

Listing 1: Sum Product Program with 3 communities high-
lighted in different colours

int main() {

const int N = 10;

int sum = 0;

int product = 1;

int i = 1;

while(i < N) {

sum = sum + i;

product = product * i;

i = i + 1;
}

printf("%d\n" , product );

printf("%d\n" , sum );

}

Fig. 2: BSG for ?? 1Sum Product Program with 3 commu-
nities highlighted in different colours, with 3 communities
highlighted in different colours.

subset of the SDG vertices. The subset of SDG vertices in-
cluded those vertices which had a corresponding unnormalised
Abstract Syntax Tree (AST) vertex and source-code characters.
This allows us to tie the results back to the source-code of a
program as well as greatly reducing the number slices required
to be computed.

A. Example

We show the result of applying the Louvain method to the
BSG of a simple program. In this small example, we found the
results far from arbitrary: the algorithm appeared to partition



the graph into communities each of which approximated to
different ‘semantic’ concerns of the program.

This initial promising result was the evidence which led us
to investigate these communities more extensively. We call a
community in a BSG a Dependence Community.

The sumproduct program is shown in ?? 1Sum Product Pro-
gram with 3 communities highlighted in different colours. The
communities found in the program are depicted in fig. 2Ex-
ample. There are 3 communities detected in this program: the
‘sum’ community, the ‘product’ community, and the ‘support’
community.

The ‘support’ community consists of the parts of the pro-
gram which are not directly involved in calculating the sum
or product, such as the procedure body, exit, return, and the
calls to printf. This community is separate because there are
fewer dependencies between itself and the sum/product code.

The ‘product’ community consists of the parts of the pro-
gram which compute the product, including the initialisation
of the product variable, the updating of the product variable
and the actual-in to the printf call.

The ‘sum’ community consists of the parts of the program
which compute the sum but also the loop code and the
counter N . Communities cannot overlap because the algorithm
partitions the graph therefore the loop code, which should
intuitively be in both communities, must be placed in one or
the other; the choice of the sum community is arbitrary.

The modularity of this partition of the graph is 0.227
- a positive value indicates that the graph has community
structure.

The simple example clearly exhibits community structure;
in the next section we investigate whether real-world programs
also contain dependence communities.

IV. EMPIRICAL STUDY

The study in this section is based on the analysis of 44 open-
source programs. The programs studied are a collection of
open-source software that cover a range of application domains
including games, small and large utilities and operating system
components.

In our empirical study, we applied the Louvain method to
BSG of each of the 44 programs and measured a number of
quantities. As well as measuring the modularity we calculated
the number of dependence communities, the size of the small-
est, the size of the largest and the average size of communities
measured as a percentage of program size.

A. The Program Sample

The 44 programs that are used in the empirical study are
listed in table IResults. The smallest program has 71 Analysed
Lines of Code (ALoC)1, while the largest has 76,369. The total
ALoC for the set of 44 programs is 464,621 and the average
ALoC per program is 10,559.57.

1ALoC stands for the number of lines of code obtained by counting the
unique number of lines of code attached to SDG vertices generated by
CodeSurfer (each line of code will have one or more corresponding SDG
vertices).

The smallest SDG, in terms of vertices, has 499 vertices
and the largest has 2,954,718 vertices. In terms of edges, the
smallest has 1,173 edges and the largest has 12,800,065 edges.
The total number of vertices for the set of 44 program SDGs
is 13,949,332 and the average number of vertices per SDGs
is 39,222.73. The total number of edges for the set of 44
program SDGs is 61,878,708 and the average number of edges
per SDGs is 1,406,334.25.

The program with the smallest number of slices had 172
slices and the program with the largest number of slices had
305,037 slices (number of slices is equal to number of vertices
in the BSG). The smallest BSG, in terms of edges, has 9,296
edges and the largest has 16,449,266,842 edges.

The total number of slices computed for the set of 44
programs was 1,725,800 and the average number of slices per
program is 317,030.28.

B. Results

The results of the empirical study are listed in table IResults
and fig. 3Results shows the modularity for each of the 44
programs.

The most promising result of the empirical study is that all
44 programs have a positive modularity which indicates that
BSGs exhibit community structure. The modularity for the set
of programs varies, with some programs showing a stronger
community structure; although it is not yet clear what ‘stronger
community structure’ means in terms of software dependence.

Fig. 3: Modularity calculated using dependence community
and dependence cluster partitions of the BSGs.

The highest modularity is 0.644 for gnurobots-1.2.0, the
lowest is 7.47×10−5 for global-6.0 and the average modularity
for the 44 programs is 0.12.

The program ed-1.5, although not the smallest, has only 2
communities – one consuming about 10% and the other 90%
of the program. This suggests that there is a large section of
code with a high dependence between statements. This result
is similar to the discovery of a large dependence cluster in the
same program by Binkley and Harman [3].

The largest community, on average, consumes 53.41% of
a program; this echoes the results of Binkley and Harman



who found that programs contain large dependence clusters
[4]. Two programs (global-6.0 and gnujump-1.05) have a
dependence community that is > 90% of the program code.
The larger program of the two has a community that is 97.8%
of the program and 57 other communities; and the smaller has
a community that is 92% of the program and only 11 other
communities.

As program size increases (in terms of ALoC) so does
the number of communities detected; the Pearson correlation
is R = 0.82 with p-value < 0.000001. This could be due
to larger programs performing more sub-tasks as part of the
overall function of the program. The largest program, gettext-
0.18, contains 264 dependence communities with a modularity
of 0.294. The average number of dependence communities in
this set of programs is 32.91.

V. THE SEMANTIC NATURE OF DEPENDENCE
COMMUNITIES

The empirical study found that dependence communities
do exist in software but what do these mean? Recall that a
community is a sub-graph with a higher than expected number
of internal connections. In our situation this means sets of
statements in a program that have high dependence between
them. It seems plausible that such collections of statements
will be part of the same functional behaviour of the program.

In this section, we investigate this by manually inspecting
a number of programs and their dependence communities to
see if, like the sumproduct example, the communities closely
approximated the separate semantic concerns of the program.

Figure 5Watermark Communities shows the BSG for the
GNU wc program and fig. 4Watermark Communities shows
the partitions for the BSGs for the further 3 programs that
we discuss in this section. In the outer ring, each section
corresponds to a community with its size as a percentage of
the total program size.

A. GNU wc
In the GNU wc program - that counts lines, characters and

words in a text file - there are two communities detected;
this can be seen graphically in fig. 5Watermark Communities.
The two communities are, broadly speaking, the ‘counting
community’ and the ‘input/output community’.

The ‘counting community’ consists of the parts of the pro-
gram which deal with counting the values of lines, characters
and words in a file; this includes vertices that iterate through
the characters in a file, vertices that increment counters, and
vertices that deal with checking if a string is a word.

The ‘input/output’ community contains vertices which deal
with the opening of the file, printing of error messages and
printing of the results of the ‘counting community’.

It is clear from the diagram that there are two distinct
communities - the advantage of using a force-directed layout
algorithm is that the nodes that are more tightly connected
are placed close together; this is exactly the same idea behind
community detection. Vertices that have more edges between
them than with the rest of the graph will be put into a
community.

B. GNU bc

The program bc is an “arbitrary precision numeric process-
ing language” [23] which is a utility included in the POSIX
standard. The program parses input from the user, translates
it into bytecode and executes the bytecode. In the program
there are two main communities detected – the parser and the
calculator. These two communities combined make up 96%
of the program; the parser community is 51% of the program
and the calculator community is 45%.

C. GNU Chess

GNU Chess [24] is another programming that exhibits a
clearly defined communities which correspond to syntactic
modules of the program. The program is composed of three
loosely-coupled modules: the fronted, adapter and engine; the
adapter sits in between the front-end and the engine. The three
main communities detected in the BSG correspond to the three
components of the software. The developers of the software
intended the components to be loosely-coupled which has
resulted in the distinct communities. If coupling was high there
would be more edges in the BSG between components and it
would therefore be less likely that they would be separate
communities. This indicates that community detection can be
applied to the problem of software metrics for the calculation
of coupling between modules in software. If the program
shows a community that expands across functional areas it
may indicate that the program has high coupling; on the other
hand, if the detected communities closely match the functional
areas of a program we can be confident that the modules are
loosely-coupled.

D. GNU Robots

GNU robots is a program with low coupling between
procedures. The user interface is written in C which interacts
with an external Scheme program. This causes the coupling
between procedures to be very low because many procedures
communicate with the external program rather than with each
other. In turn, this causes a large number of communities as
there are many areas of highly dependent code with few edges
between them.

E. Watermark Communities

Software watermarking involves embedding a unique iden-
tifier within a piece of software, to discourage the copying of
software [28, 29]. Watermarking does not prevent copyright
infringement but instead discourages it by providing a means
to identify the creator of a piece of software and/or the origin
of copied software. A hidden watermark can be extracted, at
a later date, to prove ownership.

Watermark code can be protected by opaque predicates [14]
which attempt to force the original program code to depend
on the watermark and the watermark code to depend on the
original code. However, it is difficult to make the watermark
fully integrated into the original program. Preliminary work
suggests that community detection could be used to uncover



Program ALoC SDG BSG Dependence Communities
Vertices Edges Vertices Edges Number Smallest Largest Average Modularity

a2ps-4.14 17,518 271,685 1,566,984 57,844 1,258,072,909 102 0.00346% 72.9% 0.980% 0.00101
acct-6.5.5 2,691 15,596 47,834 6,324 5,499,790 11 0.221% 28.2% 9.09% 0.282
acm-5.1 922 3,462 11,155 2,029 295,025 26 0.0493% 28.5% 3.85% 0.306
adns-1.3 5,865 102,855 347,055 20,895 177,781,311 10 0.0239% 42.2% 10.0% 0.0535
aeneas-1.2 803 17,016 61,044 8,315 20,658,335 3 22.2% 43.8% 33.3% 0.0844
anubis-4.1 6,618 68,510 247,986 19,510 149,296,932 25 0.0256% 48.9% 4.00% 0.0257
archimedes-1.2.0 766 17,665 68,781 7,957 16,881,616 11 0.126% 43.2% 9.09% 0.103
barcode-0.98 2,111 14,457 48,006 5,452 11,732,564 5 0.0183% 73.8% 20.0% 0.0277
bc-1.06 5,249 41,025 310,319 11,037 62,116,117 11 0.0634% 50.8% 9.09% 0.206
cflow-1.3 6,226 57,209 213,966 17,135 101,597,540 23 0.0117% 83.9% 4.35% 0.0454
combine-0.3.4 4,527 37,185 127,748 15,585 47,417,876 16 0.0321% 58.6% 6.25% 0.0935
cppi-1.15 1,949 12,904 46,162 5,471 6,661,891 24 0.0914% 46.6% 4.17% 0.123
diction-1.11 865 7,791 23,723 3,283 3,334,634 8 0.0305% 51.3% 12.5% 0.0539
diffutils-3.2 9,042 48,210 163,360 21,621 76,902,352 53 0.0278% 33.9% 1.89% 0.178
ed-1.5 1,883 30,779 110,126 7,274 37,419,735 2 10.3% 89.7% 50.0% 0.00692
empire-4.3.28 40,704 2,277,653 9,242,821 156,776 16,112,669,388 14 0.00319% 57.6% 7.14% 0.000247
enscript-1.6.5 9,896 107,684 539,478 33,681 287,940,746 25 0.00891% 48.5% 4.00% 0.481
findutils-4.4.2 17,206 157,518 534,727 52,843 1,191,798,635 37 0.00568% 43.7% 2.70% 0.00207
garpd-0.2.0 308 2,239 6,113 1,034 269,612 5 1.93% 43.2% 20.0% 0.108
gettext-0.18 76,369 2,954,718 12,800,065 305,037 9,961,065,414 264 0.00131% 53.1% 0.379% 0.294
gforth-0.7.0 7,457 26,851 4,456,673 13,907 52,707,360 10 0.0503% 61.3% 10.0% 0.0872
global-6.0 22,964 774,361 3,916,873 86,136 2,500,096,080 58 0.00348% 97.8% 1.72% 7.47e-05
gnats-4.1.0 13,425 130,337 551,887 35,295 666,919,670 24 0.0113% 64.2% 4.17% 0.000332
gnubik-2.4 2,936 13,542 31,977 9,417 805,652 39 0.0531% 16.2% 2.56% 0.483
gnuchess-6.0.1 12,064 103,525 336,793 28,072 85,105,593 79 0.0178% 27.8% 1.27% 0.486
gnuedma-0.18.1 12,485 1,334,533 3,921,091 63,560 1,141,664,053 94 0.00157% 56.1% 1.06% 0.0543
gnuit-4.9.5 11,522 181,333 785,979 29,792 356,982,854 32 0.0101% 68.0% 3.13% 0.00661
gnujump-1.0.5 4,979 42,620 136,880 15,345 77,794,411 12 0.0391% 92.0% 8.33% 0.00277
gnurobots-1.2.0 1,230 5,551 13,306 3,773 169,759 25 0.106% 18.9% 4.00% 0.644
gnushogi-1.3 4,417 24,079 79,091 9,597 34,527,979 18 0.0104% 59.1% 5.56% 0.0796
gperf-3.0.4 3,625 15,712 45,420 8,976 13,394,816 21 0.0334% 48.8% 4.76% 0.0730
inetutils-1.8 31,941 835,082 2,928,870 142,631 4,265,435,922 80 0.00210% 50.0% 1.25% 0.0694
lame-3.99.1 16,337 107,876 410,316 39,736 580,705,172 54 0.0126% 53.3% 1.85% 0.0482
ntp-4.2.6p5-RC1 41,232 1,177,368 5,501,985 167,394 8,053,207,729 72 0.000597% 49.7% 1.39% 8.38e-05
pure-ftpd-1.0.32 7,142 65,674 240,992 18,591 130,914,642 12 0.0377% 58.1% 8.33% 0.0595
rsync-3.0.9 21,099 2,145,312 9,327,181 142,962 16,449,155,234 30 0.00210% 67.7% 3.33% 0.00965
sed-4.2 6,527 75,658 276,319 24,377 374,571,561 11 0.0164% 53.5% 9.09% 0.0248
tar-1.23 22,002 535,824 1,974,361 97,435 4,946,266,842 53 0.00308% 52.9% 1.89% 0.00109
time-1.7 382 1,822 5,290 826 127,281 5 9.56% 37.7% 20.0% 0.0853
userv-1.0.3 3,629 69,978 231,217 14,184 97,915,761 7 0.00705% 79.4% 14.3% 0.0715
wc 71 499 1,173 172 9,296 2 48.8% 51.2% 50.0% 0.136
wdiff-0.5 658 3,242 9,326 1,301 385,953 4 15.1% 32.1% 25.0% 0.107
which-2.20 774 5,138 15,787 2,189 2,513,834 5 0.411% 67.6% 20.0% 0.0181
zlib-1.2.5 4,205 27,254 162,468 11,029 65,570,162 26 0.0272% 44.3% 3.85% 0.0407
Sum 464,621 13,949,332 61,878,708 1,725,800 69,426,360,038 1,448
Average 10,559.57 39,222.73 1,406,334.27 317,030.28 1,577,871,819.05 32.91 2.49% 53.41% 9.54% 0.12

TABLE I: Dependence Community Statistics

hidden watermarks as the additional watermarking code tends
to reside in its own communities.

For example, fig. 6Watermark Communitiesa shows the
BSG of a Java program that has been injected with a dynamic
watermark [15]; fig. 6Watermark Communitiesb shows the
communities detected using the Louvain method in which the
majority of the watermark code is in its own community.

VI. DEPENDENCE COMMUNITIES VS DEPENDENCE
CLUSTERS

A dependence cluster [3, 33] is a maximal set of mutually
dependent program statements, or SDG vertices. It is a maxi-
mal clique within a BSG in which every vertex is connected
to every other vertex; thus a dependence cluster is a stricter
form of dependence community in a BSG.

?? 2Example Dependence Cluster is a dependence cluster
because slicing on any line will give the slice {1, 2, 3}.

Listing 2: Example Dependence Cluster

1 while(i < 10)
2 if(A[i] > 0)
3 i = i + 1;

Finding dependence clusters is NP-hard which led Binkley
and Harman to approximate to them by saying two vertices
are in the same dependence cluster if and only if they have
the same slice. These are cliques, but not, in general, maximal
ones. A clique, being a fully connected subgraph, may be an
overly strict requirement for what is required [33].

Figure 3Results shows the modularity for the 44 BSGs
when partition using dependence communities and dependence
clusters. It turns out that if we apply the Louvain method to the
same graphs we get a partition with higher modularity. In other
words it produces ‘clusters’ with a stronger ‘internal inter-
dependence’ than those produced by Binkley and Harman’s
approximation.

It could be argued, therefore, that dependence communities
may be a better approximation to dependence clusters or at



(a) GNU bc

(b) GNU Chess

(c) GNU Robots

Fig. 4: BSG partitions, as a percentage of program size.

Fig. 5: Communities detected in the wc program. Q = 0.136.

(a) Highlighted Watermark

(b) Highlighted Communities

Fig. 6: A Java Program’s BSG with highlighted watermark
and with detected communities.



least a better approximation to the properties of programs that
the authors are trying to capture using dependence clusters.

The inner rings in fig. 4Watermark Communities show the
dependence cluster partitions for the BSGs for the 3 programs
discussed in the previous section. Each section corresponds to
a cluster with its size as a percentage of the total program size;
only clusters with size > 1 are shown. It is interesting to note
that the dependence clusters and dependence communities for
GNU bc are quite similar, except that the communities are
bigger. However, with GNU Chess there is only one ‘large’
dependence cluster and many small clusters; this is clearly a
different result from dependence communities. In the GNU
Robots program there are no large dependence clusters, most
likely due to the low coupling between procedures; there
are however, moderately sized communities. The difference
results from the fact that clusters must be cliques whereas
communities are not as strict – this means that there are more
chances for the semantically related statements in a program
to be grouped together.

There is a strong correlation between the size of the largest
dependence community in a program and the size of the largest
dependence cluster; the Pearson correlation between these is
R = 0.51 with a p-value < 0.0001.

Fig. 7: Largest dependence community vs the largest depen-
dence cluster.

It turns out that dependence communities tend to be larger
than dependence clusters. A dependence cluster is a form of
dependence community and a programs with large dependence
clusters will have large dependence communities.

VII. CONCLUSION AND FUTURE WORK

This paper is the first to investigate community structure at
the statement-level in software. We introduce the concept of
a dependence community and have shown that, at this level,
BSGs have community structure and that the Louvain method
seems to place the program statements in communities that
reflect the semantic concerns.

We have described an empirical study of 44 open-source
programs. The result of the empirical study was positive –
each of the 44 BSGs exhibited community structure. The

analysis involved 464,621 lines of code and BSGs that totalled
1,725,800 program slices.

We manually inspected a number of programs to answer
the question “what do dependence communities in software
mean?” The analysis revealed that dependence communities
seem to reflect the functional behaviour or semantics of the
program.

Dependence communities perform a goal similar to that
of other work on the extraction of code from a program
that expresses domain-level concepts implemented by the
program. Concept assignment [2] attempts to relate the high-
level concepts implemented by a program to portions of the
source-code. Several approaches have been taken to solve
this problem including the unification of program slicing and
concept assignment [7, 10, 25, 32].

Clearly, the fact that software does exhibit community
structure and that the fact that community structure appears
to reflect the semantic properties of the software leads us to
believe that there is a huge number of potential applications of
dependence communities including program comprehension,
maintenance, debugging, software metrics, refactoring, testing
and software protection.

The modularity for the set of 44 programs in the empirical
study varies, with some programs showing a stronger commu-
nity structure than others. It is not yet clear what ‘stronger
community structure’ means in terms of software dependence
and further work will investigate the relationship between
modularity and software dependence.

We found that programs have large dependence commu-
nities and similar results have been found for dependence
clusters. We have shown that dependence communities give
a stronger modularity i.e. the Louvain method partitions the
BSG into areas of ‘tighter’ dependence. It is clear that there
is a relationship between dependence clusters and dependence
communities and further work will involve undertaking a
more detailed examination of the differences and similarities
between these.

Further work will also investigate the relationship between
cohesion, coupling and dependence communities. For exam-
ple: do procedures that contain more than 1 community have
a low cohesion? Do programs with high coupling have larger
communities?

Additionally, we intend to investigate the relationship be-
tween standard graph metrics such as density, centrality,
clustering coefficient, network diameter and the dependence
in software graphs. Modelling dependence as a graph affords
us the opportunity to apply such metrics which may have
significance in the context of software dependence.

Preliminary results suggest that, unlike other software net-
works, BSGs are not scale-free and that this is caused by
the presence of large dependence clusters. Further work will
involve verifying this result and conducting an empirical study
to investigate the effects that dependence clusters have on the
topology of BSGs.
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