
An Evaluation of Static Java Bytecode
Watermarking

James Hamilton and Sebastian Danicic ∗

Abstract—-The rise in the use of the Internet and
bytecode languages such as Java bytecode and Mi-
crosoft’s Common Intermediate Language have made
copying, decompiling and disassembling software eas-
ier. The global revenue loss due to software piracy
was estimated to be more than $50 billion in 2008.
Watermarking is a technique which attempts to pro-
tect software by inserting copyright notices or unique
identifiers into software to prove ownership. We eval-
uate the existing Java static watermarking systems
and algorithms by using them to watermark byte-
code files and then applying distortive attacks to each
watermarked program by obfuscating and optimising.
Our study revealed that a high proportion of water-
marks were removed as a result of these transforma-
tions both in the commercial and academic water-
marking systems that we tested. This is further ev-
idence that static watermarking techniques on their
own do not give sufficient protection against software
piracy.

Keywords: java, bytecode, watermarking, obfuscation,

program transformation

1 Introduction

Software theft, also known as software piracy, is the act
of copying a legitimate application and illegally distribut-
ing that software, either free or for profit. Legal meth-
ods to protect software producers such as copyright laws,
patents and license agreements [1] do not always dissuade
people from stealing software, especially in emerging mar-
kets where the price of software is high and incomes are
low. Ethical arguments, such as fair compensation for
producers, by software manufacturers, law enforcement
agencies and industry lobbyists also do little to counter
software piracy. The global revenue loss due to soft-
ware piracy was estimated to be more than $50 billion
in 2008 [2].

Software watermarking involves embedding a unique
identifier within a piece of software, to discourage soft-
ware theft. Watermarking does not prevent theft but in-
stead discourages software thieves by providing a means
to identify the owner of a piece of software and/or the ori-

∗Submitted August 2010. Department of Comput-
ing, Goldsmiths, University of London, United Kingdom,
james.hamilton@gold.ac.uk, s.danicic@gold.ac.uk

gin of the stolen software [3]. The hidden watermark can
be extracted, at a later date, by the use of a recogniser
to prove ownership of stolen software. It is also possible
to embed a unique customer identifier in each copy of the
software distributed which allows the software company
to identify the individual that pirated the software. It is
necessary that the watermark is hidden so that it cannot
be detected and removed. It is also necessary (in most
cases), that the watermark is robust - that is, resilient to
semantics preserving transformations (such as optimisa-
tions or obfuscations).

Technical measures have been introduced to protect dig-
ital media and software, due to the ease of copying com-
puter files. Some software protection techniques, of vary-
ing degrees of success, can be used to protect intellectual
property contained within Java class-files.

The Java virtual machine is a popular platform for exe-
cutable programs from languages including, but not lim-
ited to Java. The Java virtual machine provides a plat-
form for which programs can be written once and run
on any physical machine for which there is a Java virtual
machine. Java bytecode is higher level than machine code
and is relatively easy to decompile with only a few prob-
lems to overcome [4].

Encryption and obfuscation aim to either decrease pro-
gram understand or prevent decompilation, while water-
marking and fingerprinting uniquely identify applications
to prove ownership in a court of law. We present a sur-
vey of existing Java bytecode watermarking software and
evaluate their effectiveness.

2 Background

Watermarking techniques are used extensively in the en-
tertainment industry to identify multimedia files such as
audio and video files, and the concept has extended into
the software industry. Watermarking does not aim to
make a program hard to steal or indecipherable like ob-
fuscation but it discourages theft as thieves know that
they could be identified [5].

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

2.1 Difficulties of Software Watermarking

Software watermarks present several implementation
problems and many of the current watermarking algo-
rithms are vulnerable to attack. Watermarked software
must meet the following conditions:

1. program size must not be increased significantly.

2. program efficiency must not be decreased signifi-
cantly.

3. robust watermarks must be resilient to semantics
preserving transformations (fragile watermarks, by
definition, should not be).

4. watermarks must be sufficiently well hidden, to avoid
removal.

5. watermarks must be easy for the software owner to
extract.

Perhaps the most difficult problem to solve is keeping
the watermark hidden from attackers while, at the same
time, allowing the software owner to efficiently extract
the watermark when needed. If the watermark is too easy
to extract then an attacker would be able to extract the
watermark too. If a watermark is too well hidden then the
software owner may not be able to find the watermark,
in order to extract it. Some watermark tools (such as
Sandmark [6]) use markers to designate the position of
the stored watermark - this is problematic as it poses a
risk of exposing the watermark to an adversary.

Watermarks should be resilient to semantics preserving
transformations and ideally it should be possible to recog-
nise a watermark from a partial program. Semantics pre-
serving transformations, by definition, result in programs
which are syntactically different from the original, but
whose behaviour is the same. The attacker can attempt,
by performing such transformations, to produce a seman-
tically equivalent program with the watermark removed.
Redundancy and recognition with a probability threshold
may help with these problems [7]. Ideally, software water-
marks should be resilient to decompilation-recompilation
attacks, as decompilation of Java is possible (though not
perfect [4]).

The watermark code must be locally indistinguishable
from the rest of the program so that it is hidden from
adversaries [8]. For example, imagine a watermark which
consists of a dummy method with 100 variables - this
kind of method will probably stand out in a simple anal-
ysis of the software (such as using software metrics tech-
niques [9, 10]). It could be difficult to programatically
generate code which is indecipherable from the human-
generated program code but statisical analysis of the
original program could help in generating suitable wa-
termarks [7].

Software watermarks must be efficient in several ways:
cost of embedding, cost of runtime and cost of recognition
time.

The cost of embedding a software watermark can be di-
vided into two areas: developer time and embedding cost.
The former simply quantifies the time that a developer
spends embedding a watermark, while the latter quanti-
fies the execution time of a software watermarking tool.
Embedding costs are not a significant problem except in
certain cases such as live multimedia streaming.

Developer time is important in use of software water-
marks as the developer should not have to spend a large
amount of time preparing a software watermark. The
complexity of a software watermark is proportional to the
resilience of the watermark - that is, the greater amount
of time a developer spends embedding a watermark the
harder it may be for an adversary to crack. For exam-
ple, a developer could spend days introducing a subtle
semantic property into the program which is unique to
the software and very hard to discover.

In the middle of the scale is a semi-automatic watermark
which involves a developer preparing a program before a
watermarking tool embeds the watermark. The prepara-
tions could include inserting markers where watermark
code should be inserted, or creating dummy methods
which watermarks could use. Monden et al. [11] describe
a watermarking algorithm which requires the production
of a dummy method in a program for the watermark to be
stored. A programmer must create this dummy method
manually and then execute watermarking software to em-
bed the watermark.

The cost of runtime depends on the effect that the trans-
formations applied by the watermark have had on the
size and execution time. For example, Hattanda et al.
[12] found that the size of a program, watermarked with
Davidson/Myhrvold [13] algorithm, increased by up to
24% and the performance decreased by up to 14%.

Dummy methods, which are not executed, will have min-
imal effect on runtime cost but dynamic watermarks may
have a high runtime cost as the watermark is built during
program execution. The fidelity of watermark, ‘the ex-
tent to which embedding the watermark deteriorates the
original content’ [14], should also be taken into account
for the effects caused by watermarking, for example em-
bedding a watermark may introduce unintentional errors.

The ideal recognition time of a watermark will most likely
be quick but in some cases it may be important to artifi-
cially slow watermark recognition time to prevent oracle
attacks [14]. Such attacks rely on the repetitive execu-
tion of a recogniser thus fast recognition time helps an
adversary.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

2.2 Types of Watermark

Software watermarks can be broadly divided into two cat-
egories: static and dynamic [15]. The former embeds the
watermark in the data and/or code of the program, while
the latter embeds the watermark in a data structure built
at runtime. Additionally, Nagra et al. define four cate-
gories of watermark [14]:

Authorship Mark identifying a software author,
or authors. These watermarks are generally visible
and robust.

Fingerprinting Mark identifying the channel of
distribution, i.e. the person who leaked the software.
The watermarks are generally invisible, robust and
consist of a unique identifier such as a customer ref-
erence number.

Validation Mark to verify that software is genuine
and unchanged, for example like digitally signed Java
Applets. These watermarks must be visible to the
end-user to allow validation and fragile to ensure the
software is not tampered with.

Licensing Mark used to authenticate software
against a license key. The key should become ineffec-
tive if the watermark is damaged therefore licensing
marks should be fragile.

In this paper, we evalaute static watermarking systems
which enable software authors to prove ownership of their
software and/or identify the customer responsible for the
copyright infringement. We are therefore interested in
only the first two kinds of watermarks: authorship marks
and fingerprint marks.

2.3 Program Transformation Attacks

Program transformation attacks on watermarked soft-
ware can be divided into three categories:

2.3.1 Additive

An additive attack involves inserting another water-
mark into an already watermarked application, thus over-
writing the original watermark. This attack will usually
work if a watermark of the same type is embedded but
not necessarily if a different type of watermark is embed-
ded [16].

2.3.2 Subtractive

A subtractive attack involves removing the section, or
sections, of code where the watermark is stored while
leaving behind a working program. This could be

achieved by dead code elimination, statistical analysis or
program slicing.

2.3.3 Distortive

Distortive attacks involve applying semantics preserving
transformations to a program, such as obfuscations or
optimisations thus removing any watermarks which rely
on program syntax. For example, renaming variables,
loop transformations, function inlining, etc.

Both static and dynamic watermarks can be sus-
ceptible to program transformation attacks. Myles et
al. [16] conducted an evaluation of dynamic and static
versions of the Arboit algorithm by watermarking and
obfuscating test files. They found the dynamic version to
be only minimally stronger than the static version, and
both versions could be defeated by distortive attacks.

3 Emperical Evaluation

We evaluate the existing static watermarking software by
watermarking 60 jar files with all available watermark al-
gorithms and then apply a distortive attack to each wa-
termarked program, by obfuscating and optimising. Af-
ter all the programs have been transformed we attempt
to extract the watermarks from the programs. We expect
that many watermarks will be lost during the transfor-
mations and attempt to find which transformations most
affect the watermarks.

3.1 The Watermarkers

We are testing 14 different static watermarking algo-
rithms from 3 different watermarking systems: Sand-
mark, Allatori and DashO. The latter two are commer-
cial systems, while the former is an academic open-source
framework. These are the only available systems that we
could obtain for watermarking Java programs.

Some of the algorithms have been evaluated before (for
example Collberg et al. have compared the David-
son/Myhrvold and Monden algorithms [17]) and we re-
evaluate them with our set of test programs. To the best
of our knowledge, the commercial watermarking systems,
Allatori and DashO, haven’t been evaluated before.

3.1.1 Sandmark

SandMark [6] is a tool developed by Christian Collberg et
al. at the University of Arizona for research into software
watermarking, tamper-proofing, and code obfuscation of
Java bytecode. The project is open-source and both bina-
ries and source-code can be download from the SandMark
homepage [6]. We used version 3.4.0 released in 2004.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

3.1.2 Allatori

Allatori [18] is a commercial Java obfuscator complete
with a watermarking system created by Smardec [19].
The company claim that ‘if it is necessary for you to
protect your software, if you want to reduce its size and to
speed up its work, Allatori obfuscator is your choice’ [18].
We used version 2.8 released in 2009.

3.1.3 DashO

DashO [20] is a commerical Java security solution, includ-
ing obfuscator, watermarking and encrypter - similar to
Allatori. DashO is made by PreEmptive Solutions [21]
who claim that ‘DashO provides advanced Java obfus-
cation and optimization for your application’. We used
version 6.3.3 released in 2010.

3.2 The Watermark Algorithms

We evaluate 14 static watermarking algorithms available
to us from the 3 watermarking systems.

Sandmark contains 121 static Java bytecode wa-
termarking algorithms [22]:

1. Add Expression adds a bogus addition expression
containing the watermark to a class-file.

2. Add Initialization adds bogus local variables to a
method in a class-file.

3. Add Method and Field splits a watermark in two
- one half stored in the name of a bogus field, the
other half store in the name of a bogus method. The
new method accesses the field, while a randomly cho-
sen method calls the new method to make it seem
like they are part of the program.

4. Add Switch embeds the watermark in the case val-
ues of a switch statement, inserted at the beginning
of a randomly chosen method.

5. Davidson/Myhrvold [13] embeds the watermark
by re-ordering basic blocks in a suitable method.
A previous study found that this algorithm is sus-
ceptible to semantics-preserving transformation at-
tacks [17].

6. Graph Theoretic Watermark [8] embeds the wa-
termark in a control-flow graph, which is added to
the original program. It has previously been shown
that if fewer than about half of the blocks in the wa-
termarked application are modified this watermark
survives [23].

1A 13th static algorithm is included, but not counted here -
Steganography. This algorithm stores a watermark within PNG
files in the program jar file.

7. Monden [11] embeds the watermark by replacing
opcodes in a dummy method, generated by Sand-
mark. A previous study found that this algorithm
is susceptible to semantics-preserving transformation
attacks [17].

8. Qu/Potkonjak [24,25] embeds the watermark in lo-
cal variable assignments by adding constraints to the
interference graphs. Collberg et al. [26] implemented
their version of the QP algorithm, which they call
QPS, in Sandmark.

9. Register Types embeds a watermark by introduc-
ing local variables of certain Java standard library
types.

10. Static Arboit [16, 27] embeds a method by encod-
ing the watermark in an opaque predicate and then
appending the predicate to a selected branch.

11. Stern (Robust Object Watermarking) [28] em-
beds the watermark as a statistical object by creat-
ing a frequency vector representation of the code. A
previous study found that the watermark can survive
many high-level transformations that affect classes,
fields, and method signatures [29].

12. String Constant is a simple watermarking algo-
rithm which simply embeds the watermark string
into the constant pool of a class-file.

The two commercial watermarking systems contain one
algorithm each:

13. Allatori embeds watermarks as a sequence of push
and pop operations inserted into multiple class-file
methods.

14. Dash-O Pro renames classes and inserts some extra
static code in each of the class-files.

3.3 The Transformation Attacks

Sandmark contains a variety of semantics preserving ob-
fuscations which we will use to evaluate the watermarking
systems. We also use Proguard [30] to optimise the test
programs, as another form of obfuscation. In total, there
are 37 different transformations to be applied.

3.4 The Jar files

All the jar files that we use in the tests are plugins for
the open-source text editor jEdit [31]. These files are
fairly small (average 30KB) but represent a collection of
real-world Java software2. The range of plugins repre-
sent a variety of code, and were all written by different

2we found that larger files cause problems with Sandmark’s ob-
fuscator resulting in crashes and/or extremely long embed times

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

programmers but as they are plugins they share some
characteristics. For example, some classes may subclass
jEdit’s abstract plugin classes to use jEdit’s plugin API.
All the test files were obtained by installing jEdit and
then using the built-in plugin manager to download the
plugin jar files. The average number of classes per jar is
11, while the average number of methods per jar is 66.
The average number of fields 35 and the average number
of local variables is 180.

The biggest program jar was 712.1KB while the smallest
was 1.9KB. The largest program jar had 169 classes and
the smallest had only 1. Two programs had no fields
while the largest program contained 523. The largest
program contained 3004 locals variables.

4 Results

4.1 Watermarking

After embedding watermarks we obtained 671 out of an
expected 840 watermarked jars. Some watermark al-
gorithms failed to embed the specified watermark, due
to error or incompatible program jar. For example,
Qu/Potkonjak could only embed watermarks in 1 of the
programs because the class files were too small for the
watermark. Allatori, String Constant and Add Expres-
sion managed to correctly embed watermarks in all 60
test programs - they were embedded and recognised cor-
rectly. Only 79.9% of the expected watermarked jar files
were actually produced (see figure 1).

Out of the 671 watermarked jar files only 588 contained
watermarks which were successfully recognised before the
transformation attacks were applied. This means only
87.6% of the watermarks in the watermarked jar files pro-
duced were actually recognised (see figure 1).

4.2 Obfuscation

We obfuscated the 671 jar files with 36 obfuscations, 1 op-
timisation and 2 obfuscation combinations which should
have resulted in 26,169 attacked watermarked jars. Some
algorithms failed to output some jars so we actually ob-
tained 23,626 attacked watermarked jars using 39 seman-
tics preserving transformations. We believe this is due to
bugs in the implementation rather than a fundamental
problem with the algorithms. This means only 90.3% of
the expected attacked watermarked jar files were actually
produced (see figure 1).

4.3 Recognition

The result of recognising the watermarks in the obfus-
cated jar files are shown in table 2. The number of suc-
cessful recognitions before transformations is shown in
the first column, while the remaining columns show the
number of successful recognitions after transformations.

(a) Watermarks Embeds

(b) Watermarks Recognitions

(c) Obfuscations

Figure 1: Watermark and Obfuscation success. Out of
the 840 expected watermarked jars, only 671 were pro-
duced by the watermarkers (a), while only 588 of these
were correctly recognised (b). Out of the 26,169 expected
attacked watermarked jars only 23,626 were produced (c).

A number of zeros can be seen throughout the table indi-
cating that no watermarks was recognised with that com-
bination of the watermark and transformation. These are
the combinations of watermark and transformation that
we are interested.

4.4 Analysis

By examining the table we can see that Proguard Opti-
mizer produces the best results overall - with a low num-
ber of recognitions for all watermarkers, except String
Constant. We can also see that some of the other trans-
formations remove some of the other watermarks com-
pletely. We therefore used a combination of well per-
forming watermarks to remove more watermarks overall
(see table 1).

The results of running this combination of transforma-
tions are shown at the end of table 2, in the ‘Combo 1’ col-

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

Table 1: The combinations of transformations used for
Combo 1 and Combo 2.

Transformation C
o
m
b
o
1

C
o
m
b
o
2

Array Folder
Array Splitter
Block Marker

Constant Pool Reorderer �
Dynamic Inliner

FalseRefactor
Integer Array Splitter

Interleave Methods �
Overload Names � �

ParamAlias
Rename Registers � �

Split Classes �
String Encoder �
Class Splitter �

Field Assignment
Method Merger

Objectify
Publicize Fields

Simple Opaque Predicates �
Static Method Bodies
Bludgeon Signatures

Boolean Splitter �
Branch Inverter

Duplicate Registers
Insert Opaque Predicates �

Irreducibility �
Merge Local Integers �

Opaque Branch Insertion �
Promote Primitive Registers � �

Promote Primitive Types
Random Dead Code
Reorder Instructions
Reorder Parameters

Transparent Branch Insertion
Variable Reassigner �

Inliner �
Proguard Optimize � �

umn. This removes many of the watermarks, leaving just
71 remaining and some watermark algorithms with no re-
maining watermarks. We then generated ‘Combo 2’ by
selecting transformations which contained files in ‘Combo
1’ but which had the watermark removed.‘Combo 2’ re-
moved some more of the remaining watermarks result-
ing in just 53 files containing watermarks and the Add
Switch, Davidson/Myhrvold, Monden and Allatori wa-
termark algorithms completely defeated, compared to
‘Combo 1’.

There are still 52 watermarks recognisable after Combo
2 using the ‘String Constant’ watermark algorithm but
these can easily be removed. The String Constant al-
gorithm creates a new, unused entry in a class-file’s con-
stant pool containing the watermark value. We can easily
remove unused constant pool items with a simple static
analysis and therefore remove the 52 String Constant wa-
termarks.

Figure 2: The number of files in which watermarks were
correctly embedded and recognised.

The last remaining watermarked file contains an ‘Add
Method and Field’ watermark. This jar file caused the
obfuscators to crash and therefore could not be obfus-
cated. We believe that this happened due to bugs in
obfuscation implementations rather than a fundamental
problem with the algorithms. We therefore suggest that
this remaining watermark could be removed if the obfus-
cation implementations were corrected.

A watermarking system can fail in two ways: it fails to
embed the watermark, or the watermark is easy to re-
move. A good watermarking system is one where em-
bedding succeeds often and the watermark is not often
removed. Our results show that the static watermarking
systems performed badly at embedding and watermarks
were easily removed.

5 Conclusion

We confirmed that none of the 14 static watermark algo-
rithms are resilient to semantics preserving transforma-
tions. Our results compare similarly with previous eval-
uations of some of the static watermarking algorithms.
A combination of transformations removed all but 52
‘String Constant’ watermarks and 1 ‘Add Method and
Field’ watermark from the test files. 52 of the remaining
watermarks can be destroyed by removing (or overwrit-
ing) unused constants in a class-file’s constant pool. The
last watermarked file was rejected by some of the obfus-
cations and we assume that the watermark in this file
would be removed if the bugs in the obfuscations were
fixed.

Software watermarking must be supplemented with other

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

T
ab

le
2:

E
va
lu
a
ti
o
n
re
su
lt
s
-
a
lo
n
g
th
e
to
p
is

th
e
n
a
m
e
o
f
th
e
tr
a
n
sf
o
rm

a
ti
o
n
p
er
fo
rm

ed
a
n
d
al
o
n
g
th
e
le
ft

is
th
e
n
a
m
e
o
f
th
e
w
a
te
rm

a
rk

sy
st
em

.

Original

ArrayFolder

ArraySplitter

BlockMarker

ConstantPoolReorderer

DynamicInliner

FalseRefactor

IntegerArraySplitter

InterleaveMethods

OverloadNames

ParamAlias

RenameRegisters

SplitClasses

StringEncoder

ClassSplitter

FieldAssignment

MethodMerger

Objectify

PublicizeFields

SimpleOpaquePredicates

StaticMethodBodies

BludgeonSignatures

BooleanSplitter

BranchInverter

DuplicateRegisters

InsertOpaquePredicates

Irreducibility

MergeLocalIntegers

OpaqueBranchInsertion

PromotePrimitiveRegisters

PromotePrimitiveTypes

RandomDeadCode

ReorderInstructions

ReorderParameters

TransparentBranchInsertion

VariableReassigner

Inliner

ProguardOptimize

Combo1

Combo2

A
d
d

E
x
p
re

ss
io
n

60
60

60
60

57
60

60
6
0

57
60

60
0

28
60

60
60

60
60

60
60

24
60

60
60

60
60

59
56

60
0

7
47

60
60

59
1

10
2

0
0

A
d
d

In
it
ia
li
z
a
ti
o
n

56
56

56
56

54
56

56
5
6

55
56

56
56

56
56

44
56

56
56

56
55

55
56

55
56

5
56

56
0

0
0

7
56

10
51

48
56

56
1

0
0

A
d
d

M
e
th

o
d

a
n
d

F
ie
ld

35
35

35
35

33
30

35
3
5

7
6

34
35

29
35

23
32

35
35

35
35

35
35

35
35

35
35

35
35

35
35

35
35

35
35

35
35

27
35

6
1

A
d
d

S
w
it
ch

59
59

59
59

55
59

59
5
9

59
59

59
59

59
59

58
59

59
59

59
59

59
59

59
59

59
59

59
59

59
59

59
59

59
59

59
59

59
1

1
0

D
a
v
id
so

n
/
M

y
h
rv

o
ld

15
15

12
14

13
15

15
1
5

12
15

12
15

7
8

15
15

15
13

15
15

15
11

12
13

8
7

15
11

6
4

4
14

13
13

9
2

13
8

3
0

G
ra

p
h

T
h
e
o
re

ti
c
W

a
te
rm

a
rk

47
47

47
47

45
45

47
4
7

29
47

47
47

46
47

47
47

47
47

47
1

47
47

47
47

47
33

0
47

1
0

5
47

47
47

2
47

45
0

0
0

M
o
n
d
e
n

58
56

58
56

55
58

58
5
8

28
58

58
58

58
58

58
58

57
58

58
7

58
58

48
55

56
31

44
25

32
44

46
56

58
58

58
58

56
7

5
0

Q
u
/
P
o
tk

o
n
ja
k

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

R
e
g
is
te
r
T
y
p
e
s

51
51

51
51

49
49

51
5
1

50
9

51
0

15
51

32
51

51
6

51
51

5
51

51
51

51
51

51
51

51
51

51
51

51
51

51
1

8
1

0
0

S
ta

ti
c
A
rb

o
it

19
19

19
19

18
12

19
1
9

3
19

19
19

19
19

19
19

1
19

19
0

19
19

19
19

19
3

19
19

0
0

2
19

19
19

10
19

2
2

0
0

S
te
rn

46
43

46
45

44
44

45
4
6

39
45

46
45

45
46

45
45

45
45

45
1

45
45

46
45

45
10

26
16

42
0

5
22

46
45

45
45

42
2

0
0

S
tr
in
g
C
o
n
st
a
n
t

60
60

60
60

57
60

60
6
0

60
60

60
60

60
60

60
60

60
60

60
60

60
60

60
60

60
60

60
60

60
60

60
60

60
60

60
60

60
60

55
5
2

D
a
sh

-O
P
ro

22
4

11
0

8
8

0
2

6
4

0
0

4
11

6
0

0
2

0
1

0
2

9
0

0
10

9
0

0
0

2
0

9
2

0
1

7
22

0
0

A
ll
a
to

ri
60

60
60

60
57

54
60

6
0

59
60

60
59

60
60

60
60

60
60

60
60

60
59

60
60

60
60

60
60

56
60

60
60

60
59

59
60

58
1

1
0

forms of protection [32], such as obfuscations or tamper-
proofing techniques [33], in order to better protect a pro-
gram from copyright infringement and decompilation.

Though we have not evaluated all aspects of the water-
marking algorithms, we have shown that static water-
marks are insufficient to prove ownership of software due
to their lack of resilience to semantics preserving trans-
formations.

5.1 Future Work

Further work will involve extending the evaluation to dy-
namic watermarks which, in theory, should be resilient
to semantics preserving transformations. However, it has
been shown that at least one dynamic algorithm is only
minimally stronger than the static version [16]. We in-
tend to investigate this claim and extend the investigation
to evaluate other dynamic watermarking algorithms and
their advantages over static algorithms. Furthermore, we
plan to evaluate more factors such as runtime and em-
bedding costs, and stealthiness.

Additionally, we intend to look at the use of program slic-
ing techniques [34] in order to perform subtractive water-
mark attacks.

References

[1] G. Cronin, “A taxonomy of methods for software
piracy prevention,” Department of Computer Sci-
ence, University of Auckland, New Zealand, Tech.
Rep., 2002.

[2] B. S. Alliance, “Sixth annual BSA and IDC global
software piracy study,” Business Software Alliance,
Tech. Rep. 6, 2008.

[3] G. Myles, “Using software watermarking to dis-
courage piracy,” Crossroads - The ACM Student
Magazine, 2004. [Online]. Available: http://www.
acm.org/crossroads/xrds10-3/watermarking.html

[4] J. Hamilton and S. Danicic, “An evaluation of cur-
rent java bytecode decompilers,” in Ninth IEEE In-
ternational Workshop on Source Code Analysis and
Manipulation, vol. 0. Edmonton, Alberta, Canada:
IEEE Computer Society, 2009, pp. 129–136.

[5] W. F. Zhu, “Concepts and techniques in software
watermarking and obfuscation,” PhD Thesis, The
University of Auckland, 2007.

[6] C. Collberg, “Sandmark,” Department of Computer
Science, Aug. 2004. [Online]. Available: http:
//www.cs.arizona.edu/sandmark/

[7] A. Mishra, R. Kumar, and P. P. Chakrabarti,
“A method-based Whole-Program watermarking
scheme for java class files,” 2008.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

[8] R. Venkatesan, V. Vazirani, and S. Sinha, “A graph
theoretic approach to software watermarking,” in
Proceedings of the 4th International Workshop on
Information Hiding, 2001.

[9] M. H. Halstead, Elements of software science (Op-
erating and programming systems series). Elsevier,
1977, published: Hardcover.

[10] Kearney, Sedlmeyer, Thompson, Gray, and Adler,
“Software complexity measurement,” Commun.
ACM, vol. 29, no. 11, p. 10441050, 1986.

[11] A. Monden, H. Iida, K. ichi Matsumoto, K. Torii,
and K. Inoue, “A practical method for watermark-
ing java programs,” in COMPSAC ’00: 24th Inter-
national Computer Software and Applications Con-
ference. Washington, DC, USA: IEEE Computer
Society, 2000, p. 191197.

[12] K. Hattanda and S. Ichikawa, “The evaluation of
davidsons digital signature scheme,” IEICE Trans.
Fundamentals, vol. E87A, no. 1, 2004.

[13] R. Davidson and N. Myhrvold, “Method and system
for generating and auditing a signature for a com-
puter program,” Jun. 1996, microsoft Corporation,
US Patent 5559884.

[14] J. Nagra, C. Thomborson, and C. Collberg, “A
functional taxonomy for software watermarking,” in
Aust. Comput. Sci. Commun., M. J. Oudshoorn, Ed.
Melbourne, Australia: ACS, 2002, pp. 177–186.

[15] C. Collberg and C. Thomborson, “Software wa-
termarking: Models and dynamic embeddings,”
in Principles of Programming Languages 1999,
POPL’99, 1999.

[16] G. Myles and C. Collberg, “Software watermark-
ing via opaque predicates: Implementation, analysis,
and attacks,” in ICECR-7, 2004.

[17] G. Myles, C. Collberg, Z. Heidepriem, and A. Nav-
abi, “The evaluation of two software watermarking
algorithms,” Softw. Pract. Exper., vol. 35, no. 10, p.
923938, 2005.

[18] Smardec, “Allatori java obfuscator,” Sep. 2009,
2009. [Online]. Available: http://www.allatori.com/

[19] “Smardec - software development and information
technology offshore outsourcing company,” 2008.
[Online]. Available: http://www.smardec.com/

[20] “DashO,” 2010. [Online]. Available: http://www.
preemptive.com/products/dasho/overview

[21] “Preemptive solutions,” 2010. [Online]. Available:
http://www.preemptive.com/

[22] C. Collberg, “Sandmark algorithms,” University of
Arizona, Department of Computer Science, Tech.
Rep., Jul. 2002.

[23] C. Collberg, A. Huntwork, E. Carter, and
G. Townsend, “Graph theoretic software water-
marks: Implementation, analysis, and attacks,” in
Workshop on Information Hiding, 2004.

[24] G. Qu and M. Potkonjak, “Hiding signatures in
graph coloring solutions,” in Information Hiding,
1999, pp. 348–367.

[25] G. Qu and M. Potkonjak, “Analysis of watermarking
techniques for graph coloring problem,” in Proceed-
ings of the 1998 IEEE/ACM international confer-
ence on Computer-aided design. San Jose, Califor-
nia, United States: ACM, 1998, pp. 190–193.

[26] G. Myles and C. Collberg, “Software watermarking
through register allocation: Implementation, anal-
ysis, and attacks,” in International Conference on
Information Security and Cryptology, 2003.

[27] G. Arboit, “A method for watermarking java pro-
grams via opaque predicates,” in The Fifth Interna-
tional Conference on Electronic Commerce Research
(ICECR-5), 2002.

[28] J. Stern, G. Hachez, F. Koeune, and J. Quisquater,
“Robust object watermarking: Application to code,”
in Information Hiding Workshop ’99, 1999, pp. 368–
378.

[29] C. Collberg and T. R. Sahoo, “Software watermark-
ing in the frequency domain: implementation, anal-
ysis, and attacks,” J. Comput. Secur., vol. 13, no. 5,
pp. 721–755, 2005.

[30] E. Lafortune et al., “ProGuard,” Jul. 2009. [Online].
Available: http://proguard.sourceforge.net/

[31] world-wide developer team, “jEdit - programmer’s
text editor,” 2010. [Online]. Available: http:
//www.jedit.org/

[32] J. Sogiros, “Is protection software needed
watermarking versus software security,” Mar.
2010. [Online]. Available: http://bb-articles.com/
watermarking-versus-software-security

[33] C. S. Collberg and C. Thomborson, “Watermarking,
Tamper-Proofing, and obfuscation - tools for soft-
ware protection,” in IEEE Transactions on Software
Engineering, vol. 28, Aug. 2002, p. 735746.

[34] M. Weiser, “Program slicing,” in ICSE ’81: Proceed-
ings of the 5th international conference on Software
engineering. Piscataway, NJ, USA: IEEE Press,
1981, p. 439449.

Proceedings of the World Congress on Engineering and Computer Science 2010 Vol I
WCECS 2010, October 20-22, 2010, San Francisco, USA

ISBN: 978-988-17012-0-6
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCECS 2010

