
BSc (Hons) Computing and Information Systems

CIS109

Introduction to Java and Object Oriented
Programming (Volume 2)

Subject guide

Written by Sebastian Danicic, Department of Computing Science, University of London.

First published 2002

This edition published 2007

Copyright c© University of London Press 2007

Printed by Central Printing Service, The University of London

Publisher:
University of London Press
Senate House
Malet Street
London
WC1E 7HU

All rights reserved. No part of this work may be reproduced in any form, or by any means,
without permission in writing from the publisher. This material is not licensed for resale.

Contents

1 Introduction 1
1.1 What We Cover in this Subject Guide . 1

1.1.1 Suggested Schedule for Volume 2 . 1
1.2 Books . 2

2 Command-Line Arguments 3
2.1 Learning Objectives . 3
2.2 Reading . 3
2.3 Introduction . 3
2.4 The Number of Command Line Arguments . 4
2.5 Exercises on Chapter 2 . 5

2.5.1 Add One . 5
2.5.2 Add . 5
2.5.3 Backwards . 5
2.5.4 Add All . 5
2.5.5 Add All Real . 5
2.5.6 Exercises (no solutions) . 5

2.6 Summary . 5

3 Recursion 7
3.1 Learning Objectives . 7
3.2 Reading . 7
3.3 Definition of a Recursive Method . 7
3.4 Examples of Recursive Methods . 7

3.4.1 Factorial . 7
3.4.2 Greatest Common Divisor . 7

3.5 Exercises on Chapter 3 . 8
3.5.1 Fibonacci Numbers . 8
3.5.2 Multiplication . 8
3.5.3 Exponentiation . 8
3.5.4 Reversing Input . 8
3.5.5 The Syracuse Sequence . 8

3.6 Summary . 9

4 Packaging Programs 11
4.1 Learning Objectives . 11
4.2 Reading . 11
4.3 Introduction . 11
4.4 Public Classes . 12
4.5 File Names and Public Classes . 12

4.5.1 Running Programs that are Part of Packages 12
4.6 The import Statement . 12
4.7 Laborious but Worthwhile Packaging Task . 13
4.8 Exercises on Chapter 4 . 14

4.8.1 Add Comments . 14
4.8.2 No Import . 14
4.8.3 A Complete Application . 14

i

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

4.8.4 Add your Own Method . 14
4.9 Summary . 15

5 More About Variables 17
5.1 Learning Objectives . 17
5.2 Reading . 17
5.3 Introduction . 17

5.3.1 Local Variables . 17
5.4 What’s Really in a Variable? . 18
5.5 Exercises . 18
5.6 Parameters Passed by Value . 18
5.7 Exercises on Chapter 5 . 19

5.7.1 Arrays (1) . 19
5.7.2 Arrays (2) . 19
5.7.3 Strings . 19
5.7.4 Test Array . 19
5.7.5 Test Int . 19

5.8 Summary . 20

6 Bits, Types, Characters and Type Casting 21
6.1 Learning Outcomes . 21
6.2 Reading . 21
6.3 Introduction . 21

6.3.1 Exercise: Maximum Array Size . 21
6.4 Different Types Have Different Sizes . 22
6.5 Characters . 22

6.5.1 Exercise . 22
6.5.2 Exercise: Find All Characters . 22

6.6 Type Casting . 22
6.6.1 Quick Question . 23

6.7 The Method read() . 23
6.7.1 End of File . 23
6.7.2 A Reason why read() Returns an int 23

6.8 More Type Casting . 23
6.8.1 Question . 23

6.9 Exercises on Chapter 6 . 25
6.9.1 Research . 25
6.9.2 Int to Boolean . 25
6.9.3 Boolean to Int . 25
6.9.4 Float to Int . 25
6.9.5 Int to Float . 25
6.9.6 Double to Float . 25
6.9.7 Float to Char . 25
6.9.8 Int to Short . 25
6.9.9 Next Biggest . 25
6.9.10 What is the Output? . 26
6.9.11 Largest Int . 26

6.10 Summary . 27

7 Files and Streams 29
7.1 Learning Objectives . 29
7.2 Reading . 29
7.3 Introduction . 29
7.4 Reading Files . 29

ii

Contents

7.4.1 End Of File . 30
7.5 Reading Files a Character at a Time . 30

7.5.1 Question . 30
7.5.2 The Newline Character . 30

7.6 Writing to Files . 31
7.6.1 Closing the File . 31
7.6.2 Swap all as and bs . 31
7.6.3 Example: Counting the Number of Lines in a File 31
7.6.4 Example: Counting the Number of Words in a File 32

7.7 Example: A Simple Spell Checker . 32
7.8 A Slightly Better Spell Checker . 32
7.9 Example: A Program to Find Anagrams . 33
7.10 Exercises on Chapter 7 . 34

7.10.1 Third Line . 34
7.10.2 Hundredth Line . 34
7.10.3 Odd Lines . 34
7.10.4 Even Lines . 34
7.10.5 Cat Choose . 34
7.10.6 Cat Command Line . 34
7.10.7 Third Char . 34
7.10.8 Hundredth Char . 34
7.10.9 Odd Characters . 35
7.10.10 Even Characters . 35
7.10.11 Swapchars . 35
7.10.12 Manycat . 35
7.10.13 Swapcase . 35
7.10.14 ASCII . 35
7.10.15 Remnewline . 36
7.10.16 Tenperline . 36
7.10.17 List Words . 36
7.10.18 Assignment – Spell Checker . 36
7.10.19 Hard Assignment – A Better Spell Checker 36

7.11 Summary . 37

8 Sorting Arrays and Searching 39
8.1 Learning Objectives . 39
8.2 Reading . 39
8.3 Introduction . 39
8.4 Ways of Sorting . 39

8.4.1 Sorting as you Create . 39
8.4.2 Exercise . 40

8.5 Sorting an Array . 40
8.5.1 Swapping . 40

8.6 Searching . 41
8.6.1 Linear Searching . 41
8.6.2 Binary Searching . 41
8.6.3 Exercises on Binary Searching . 41

8.7 Efficiency of Different Algorithms: Complexity Analysis 42
8.7.1 Linear Searching . 42
8.7.2 Binary Searching . 42

8.8 Exercises on Chapter 8 . 42
8.8.1 A Class for Searching and Sorting Arrays 42
8.8.2 Test the Class . 42
8.8.3 Sorting Arrays of Strings . 43

iii

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

8.8.4 Test your Class . 43
8.8.5 Exercises (No Solutions) . 43

8.9 Example Assignment . 43
8.10 Summary . 44

9 Defining Classes 45
9.1 Learning Objectives . 45
9.2 Reading . 45
9.3 Introduction . 45
9.4 An Example of Defining your own Class . 45

9.4.1 WARNING! . 46
9.4.2 A Date Class . 46

9.5 Using a Class that you have Defined . 46
9.5.1 Using the Date Class . 46
9.5.2 Dot Notation . 47

9.6 Using Classes in other Classes . 47
9.6.1 A Person Class . 47
9.6.2 A House Class . 47
9.6.3 A Street Class . 47

9.7 An Aside: Expressions for Arrays . 48
9.8 Define your House in a Single Expression . 48
9.9 A More Complex Example with Instance Methods 48

9.9.1 The Package Statement . 48
9.9.2 Instance Variables . 48
9.9.3 A Constructor . 49
9.9.4 Creating Objects with new . 49
9.9.5 Instance Methods . 50
9.9.6 Leaving out toString() . 50

9.10 Exercises on Chapter 9 . 50
9.10.1 Exercise on IntAndDouble . 50
9.10.2 Expressions For Objects . 51
9.10.3 toString() Methods . 51
9.10.4 Exercises (no solutions) . 51

9.11 Summary . 51

10 Inheritance 53
10.1 Learning Outcomes . 53
10.2 Reading . 53
10.3 Introduction . 53
10.4 The extends keyword . 54
10.5 The super Keyword . 54
10.6 More about Instance Methods . 54
10.7 Shapes Revisited . 54

10.7.1 Extending HorizLine (Method Overriding) 55
10.7.2 Rectangles of Stars . 55
10.7.3 Better Rectangles . 56
10.7.4 Hollow Rectangles . 56

10.8 Exercises on Chapter 10 . 57
10.8.1 Test HollowRectangle . 57
10.8.2 Extend Rectangle to Square . 57
10.8.3 Extend BetterRectangle to BetterSquare 57
10.8.4 Left Bottom Triangles . 57

10.9 Exercises (no solutions) . 58
10.9.1 Left Top Triangles . 58

iv

Contents

10.9.2 Right Triangles . 58
10.10 Summary . 58

11 Exception Handling 59
11.1 Learning Objectives . 59
11.2 Reading . 59
11.3 Introduction . 59
11.4 ‘File Not Found’ Exceptions . 60
11.5 Throwing Exceptions . 60
11.6 Exercises on Chapter 11 . 61

11.6.1 ‘File Not Found’ Exceptions . 61
11.7 Summary . 61

12 Vectors 63
12.1 Learning Objectives . 63
12.2 Reading . 63
12.3 Introduction . 63
12.4 Autoboxing, Unboxing and Generics . 64
12.5 Untyped Vectors . 64

12.5.1 Exercise . 64
12.6 Sorting Vectors . 64

12.6.1 Exercises on Chapter 12 . 65
12.6.2 Exercises (no solutions) . 65

12.7 Manipulating Files Using Vectors . 65
12.7.1 Character by Character . 65
12.7.2 Line by Line . 66
12.7.3 Exercises . 66
12.7.4 Longest Line in a File . 66
12.7.5 Occurrences of Printable Characters in a File 66
12.7.6 Longest Word in the English Language 66
12.7.7 Occurrences, Most Popular First . 66
12.7.8 Do the Same Without a Vector . 66
12.7.9 Frequency . 67
12.7.10 Finding Words in Dictionary . 67
12.7.11 Exercise (no solution) . 67

12.8 A System for Processing Student Marks . 67
12.9 The Class Student . 68

12.9.1 Printing Objects . 68
12.9.2 The Raw Data File marks . 68

12.10 Exercises . 68
12.10.1 Students in Vector . 68
12.10.2 Print Students in Vector . 69
12.10.3 Print Sorted Students in Vector . 69

12.11 Exercises (no Solutions) . 69
12.11.1 Finding Students whose Name Starts with a Particular Prefix 69
12.11.2 Sorting as you Input . 69

12.12 Summary . 69

13 Conclusion 71
13.1 Topics . 71
13.2 Complete All the Challenging Problems! . 71

v

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

II Appendices 73

A Challenging Problems 75
A.1 Try out a Program [1,2] . 75
A.2 Rolling a Die [1,5] (dice.class) . 75

A.2.1 Hint . 75
A.3 Leap Years [1,7] . 75

A.3.1 Hint . 75
A.4 Drawing a Square [1,7] . 76

A.4.1 Hint . 76
A.5 How Old Are You? [1,7] (age.class) . 76

A.5.1 Hint . 77
A.6 Guessing Game [1,8] . 77

A.6.1 Hint . 77
A.7 Mouse Motion [1,8] (mouseInRect.class) . 77

A.7.1 Hint . 78
A.8 Maze [1,8] (maze.class) . 78

A.8.1 Hint . 78
A.9 Hangman [1,9] (hangman.class) . 78

A.9.1 Hint . 79
A.10 Roman Numerals [1,9] (Roman.class) . 79

A.10.1 Hint . 79
A.11 Shuffling a Pack of Cards (1) [1,10] (deal1.class) 80

A.11.1 Hint . 80
A.12 Shuffling a Pack of Cards (2) [1,10] (deal2.class) 80

A.12.1 Hint . 80
A.13 Noughts and Crosses (1) [1,11] (tictac.class) 81

A.13.1 Hint . 81
A.14 Mastermind [1,11] (mastermind.class) . 82
A.15 Noughts and Crosses (2) [1,11] (tictac2.class) 82

A.15.1 Hint . 82
A.16 Noughts and Crosses (3) [1,11] (tictac3.class) 82

A.16.1 Hint . 82
A.17 Nim [1,11] (nim.class) . 83

A.17.1 Hint . 83
A.18 Clock [1,12] . 83
A.19 Spell-Checker [2,7] . 83
A.20 Diary Program [2,9] . 84

A.20.1 Hints . 85
A.20.2 Methods needed for Date Class . 85
A.20.3 Methods needed for Event Class . 86
A.20.4 Methods needed for Diary Class . 86

B Exams 87
B.1 Exam Guidelines . 87

B.1.1 Useful Information . 87
B.1.2 Java 1.5 Changes . 87
B.1.3 Time Allowed . 87

B.2 The Exam . 88

C Previous Exam Questions (With Answers) 95

D Multiple Choice Questions 113

vi

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/dice.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/age.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/mouseInRect.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/maze.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/hangman.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/Roman.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/deal1.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/deal2.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/deal2.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/mastermind.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/tictac2.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/tictac3.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/nim.class

Contents

E Reading List 117

vii

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

viii

Chapter 1

Introduction

This is the second volume of an introductory programming course in Java. It is assumed that the
reader has first studied Volume 1 [Dan07]. For a full explanation of how to study this course, the
reader is reminded to refer to Chapter 1 of Volume 1.

1.1 What We Cover in this Subject Guide

In this volume, we cover more advanced, but essential topics in Object Oriented Programming.
These include:

Command-line arguments

Recursion

Packaging programs

More about variables

Bits, types, characters and type casting

Files and streams

Sorting arrays and searching

Defining your own classes

Inheritance

Exception handling

Vectors

1.1.1 Suggested Schedule for Volume 2

This schedule is an approximate indication of how much time to spend on each chapter. It
assumes that all the material is to be covered in ten weeks. This is a minimum. If you have a
longer period of study you can adjust this proportionally.

Week 1: Chapters 2 and 3

Week 2: Chapter 4

Week 3: Chapters 5 and 6

Week 4: Chapter 7

Week 5: Chapter 8

Week 6: Chapter 9

Week 7: Chapter 9

1

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

Week 8: Chapter 10

Week 9: Chapter 11

Week 10: Chapter 12

All the example programs given in the text, exercises and solutions, and other useful information
will be provided on the accompanying CD and on the course website.

Details on how to access this website will be posted on

http://www.londonexternal.ac.uk/current students/programme resources/index.shtml

1.2 Books

I refer to a number of books throughout the text, specifically at the beginning of each chapter.
Details of these books can be found in the bibliography in on the last page of this volume (page
117).

2

http://www.londonexternal.ac.uk/current_students/programme_resources/index.shtml

Chapter 2

Command-Line Arguments

2.1 Learning Objectives

Chapter 2 explains:

the purpose of command-line arguments

how to use command-line arguments.

2.2 Reading

[CK06] pages 308-310

2.3 Introduction

Now, at last, you will learn the purpose of the line

public static void main(String [] args)

The name, args, is a formal parameter to the main method. The parameter args is of type array
of String. The use of args is straightforward: if we run our program fred.class normally we
type java fred, but if we like, we can write anything else we like after java fred, for example:

1. java fred hello

or

2. java fred 1 2 3 4

or

3. java fred fred.java

The Strings that we type after java fred are called command line arguments. The command
line arguments are passed to the program in the String array parameter of the main method,
namely, args. (We could have called args anything we liked. Let’s stick to args though.)
In 1, above, there is one command line argument args[0] and its value is the String "hello".
In 2, there are four command line arguments:

3

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

name value
args[0] ”0”
args[1] ”1”
args[2] ”2”
args[3] ”3”

Note: "0","1","2", and "3" are all of type String. If we want to add them up we first have to
convert them to ints using the method Integer.parseInt().
In 3, there is one command line argument args[0] and its value is the String "fred.java".

2.4 The Number of Command Line Arguments

Since args is an array, the number of command line arguments is simply given by the expression
args.length. (Recall that, if a is an array then a.length is the number of elements of a.)

4

Summary

2.5 Exercises on Chapter 2

2.5.1 Add One

Write a program which prints out one more than its command line argument. For example, java
AddOne 5 should output 6, etc.

2.5.2 Add

Write a program which adds its two command line arguments i.e. java Add 5 6 should output
11.

2.5.3 Backwards

Write a program that allows you to enter as many words as you like as command line arguments
and the program prints them out in reverse order.

2.5.4 Add All

Write a program that allows you to enter as many integers as you like as command line
arguments and the program prints out their sum.

2.5.5 Add All Real

Write a program that allows you to enter as many real numbers as you like as command line
arguments and the program prints out their sum.

2.5.6 Exercises (no solutions)

1. Write a program that prints out the average of all its command line arguments.

2. Write a program that prints out all the longest of all its command line arguments.

3. Write a program that prints all its command line arguments backwards. So java back Fred
Bloggs should output derf sggolB

2.6 Summary

Having worked on Chapter 2 you will have:

Understood the purpose of command-line arguments.

Learned how to use command-line arguments.

5

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

6

Chapter 3

Recursion

3.1 Learning Objectives

Chapter 3 explains:

recursion

how to define and use recursive methods.

3.2 Reading

[Dow03] Chapter 4

3.3 Definition of a Recursive Method

A recursive method is one that calls itself.

3.4 Examples of Recursive Methods

3.4.1 Factorial

[Lecture16/FactorialNew.java]

3.4.2 Greatest Common Divisor

The greatest common divisor of two integers is the largest integer that divides them both exactly.
For example gcd(8,12)=4, gcd(7,13)=1 and gcd(16,96)=16.

An algorithm for finding the GCD of two positive integers n and m is as follows:

1. if n = m then return n

2. if n > m then subtract m from n and go to 1

3. if m > n then subtract n from m and go to 1

[Lecture16/gcdNew.java]

7

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture16/FactorialNew.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture16/gcdNew.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

3.5 Exercises on Chapter 3

3.5.1 Fibonacci Numbers

Write a program such that java fibonacci n prints out the nth Fibonacci number. The
Fibonacci sequence goes 1,1,2,3,5,8,13,21,34,55,89,· · ·.

3.5.2 Multiplication

Multiplication of non-negative integers can be defined recursively in terms of addition:
mult(n,0) = 0
mult(n,m + 1) = n+mult(n,m)

Write a class which has a method mult which implements such a function.

3.5.3 Exponentiation

Exponentiation of non-negative integers can be defined recursively in terms of Multiplication:
n0 = 1
(nm+1) = n*(nm)

Write a class which has a method power which implements such a function.

3.5.4 Reversing Input

Without using Vectors or arrays write a program which reads in characters from the keyboard
and prints them out in the opposite order to which they were typed in. The program should stop
when the user presses the enter key.

3.5.5 The Syracuse Sequence

The Syracuse Sequence starting with 14 goes like this:
14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1
The rule is as follows: if n is even then the next number in the sequence is n/2 and if n is odd the
next number is 3n + 1.
The sequence stops at 1.
Using recursion, write a program not containing the word “while”, such that for all positive
integers, n, java syr n prints out the Syracuse sequence starting with n.
(Try running syr.class to see how your program should behave.) An interesting fact about the
Syracuse sequence is that nobody knows whether it always ends with 1 or not! No-one has
proved it and no one has found an example that does not end in 1.

8

file:Lecture16/answers/syr.class

Summary

3.6 Summary

Having worked on Chapter 3 you will have:

Understood recursion.

Learned how to define and use recursive methods.

9

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

10

Chapter 4

Packaging Programs

4.1 Learning Objectives

Chapter 4 explains:

the purpose of the CLASSPATH system variable

the purpose of the package statement

the purpose of the import statement

how to run a Java program that is part of a package, from the command line.

4.2 Reading

[CK06] Chapter 13

[NK05] page 66

[Kan97] page 33

[Smi99] Chapter 17

4.3 Introduction

If you have some useful programs that you wish to use over and over again it is useful to package
them up so you can refer to them from anywhere (i.e., make them public). There is a statement
in Java that comes at the beginning of your program called a Package Statement. This is used in
conjunction with a system variable called CLASSPATH1 used by your Java System in conjunction 1See Volume 1 for

instructions on
setting the
CLASSPATH.

with your operating system to tell Java where to look for .class files.

Consider [LecturePackages/egg.java] Java will expect to find a directory called food at ‘the
top level’ of a directory in CLASSPATH.

The directory food will contain a directory called veg. The directory veg will contain a file
radish.class and radish.class will have a static method called me().

<somewhere in CLASSPATH>
|

__
| | | | |

food
|

11

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LecturePackages/egg.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

| | | |
veg
|

| | |

radish.class

The java code for radish.class could be [LecturePackages/food/veg/radish.java] Notice
the package statement.

4.4 Public Classes

We can also now explain the need for the public keyword for the method me of radish. If we
remove it and recompile LecturePackages/egg.java we get

egg.java:6: No method matching me() found in class food.veg.radish.
food.veg.radish.me();

^
1 error

If you want to be able to call a method from outside the package where it is declared you must
declare it as public.

4.5 File Names and Public Classes

If your .java file contains a public class fred then the file must be called fred.java. You can
therefore see that each java file can only define one public class. It can however define as many
non-public classes as you like.

We may wish to put the class dog in a package. Since dog is in a directory called
LecturePackages we must call the package LecturePackages as well.
[LecturePackages/dog.java]

4.5.1 Running Programs that are Part of Packages

To run our program we must type

java LecturePackages.dog

4.6 The import Statement

Now consider [LecturePackages/pig.java] Because of the import statement we do not have
to refer to the method me() by its full name food.veg.radish.me() but simply as radish.me().

We have been using the import statement throughout this course. Here is the simple Echo
program without an import statement. [Lecture2/EchoNoImportNew.java] Notice that we
have had to refer to Scanner by its full name since it is a class defined in the java.util package.

12

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LecturePackages/food/veg/radish.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LecturePackages/dog.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LecturePackages/pig.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture2/EchoNoImportNew.java

Laborious but Worthwhile Packaging Task

4.7 Laborious but Worthwhile Packaging Task

You may decide to have a new directory javacourse to put all the useful programs you have
used on this course. Package them up nicely together. The simplest way to do this would be to
keep the same directory structure as this course with the different Lectures.

<your home directory>
|

| | | | |

javacourse
|

__................
| | |
Lecture1 Lecture2 ... LecturePackages

| |
_________ ____________________________________
| | | | | |

HelloWorld.java veg
|

| | |
radish.class

and then add the full pathname /home/you/javacourse to your CLASSPATH. In Unix you would
say

CLASSPATH=$HOME/javacourse:$CLASSPATH
export CLASSPATH

and add a package statement to every program like this [Lecture1/HHH.java] You can then run
HHH.java wherever you are by typing

java Lecture1.HHH

provided your CLASSPATH is correctly set. If this seems an onerous task, then simply package up
the useful array methods like this: Please see [Dan07], Chapter 1 for more information on the
CLASSPATH system variable. [LectureNonVoidMethods/ArraysNew.java] We can now refer to
these methods in other programs. Make a new directory and use
LectureNonVoidMethods/Arrays.java to write a program which reads some numbers into an
array and prints the average. [LectureTest/Test1.java] Or if we use an import statement:
[LectureTest/Test2.java] For some reason, if you want to test a program that is part of a
package and your test program is in the same subdirectory as the package, then you must include
a package statement at the beginning of your test program as in
[LectureNonVoidMethods/Test2.java] So you make the test program also part of the package.
This is not a problem. Also notice that you do not need to import from the same package that you
are currently in. So we do not need

import LectureNonVoidMethods.*

Java will automatically look in the current package for unresolved class and method names.

13

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture1/HHH.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureNonVoidMethods/ArraysNew.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureTest/Test1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureTest/Test2.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureNonVoidMethods/Test2.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

4.8 Exercises on Chapter 4

4.8.1 Add Comments

Add your own comments explaining each of the methods in the class ArraysNew defined in
Section 4.7, page 13.

4.8.2 No Import

Consider the following Java program: [Lecture2/EchoNew.java] How would it have to be
rewritten if there was no import statement in Java?

4.8.3 A Complete Application

See the class ArraysNew in Section 4.7, page 13. The methods in class ArraysNew can be referred
to in other classes. Write a complete Java application (by calling some of the methods in the class
ArraysNew) which asks the user how many numbers they are going to enter, reads in the
numbers and prints their average.

4.8.4 Add your Own Method

Add your own method to the class ArraysNew in Section 4.7, page 13, which multiplies the
elements of an array together. Write a complete application that uses this method to compute
factorial.

14

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture2/EchoNew.java

Summary

4.9 Summary

Having worked on Chapter 4 you will have:

Understood the purpose of the CLASSPATH system variable.

Understood the purpose of the package statement.

Learned the purpose of the import statement.

Learned how to run a Java program that is part of a package, from the command line.

15

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

16

Chapter 5

More About Variables

5.1 Learning Objectives

Chapter 5 explains:

about local variables and the scope of variables

about simple variables

about reference variables

more about how the values of these variables are passed as parameters to methods.

5.2 Reading

[Fla05] Page 150

[NK05] Page 132

[Hub04] 5.2

[Kan97] Q1.10, Q2.12

5.3 Introduction

5.3.1 Local Variables

A local variable is one that is declared inside a method or inside another structure like a for
loop. Consider the program [LectureScope/p1.java] What is its output? The x declared
inside the method f() is called a local variable.

The program [LectureScope/p3.java] also prints 2 because the assignment in the method f()
is to a local variable x and not the global one that gets printed in main().

Now consider [LectureScope/p2.java] The output of this is 3 because both main() and p
reference the same global variable x.

A common error is illustrated in [LectureScope/ForLocal.java] The compiler will complain
with

ForLocal.java:8: cannot resolve symbol
symbol : variable i
location: class ForLocal

System.out.println(i);
^

17

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureScope/p1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureScope/p3.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureScope/p2.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureScope/ForLocal.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

1 error

The variable i is only in scope inside the body of the loop.

5.4 What’s Really in a Variable?

There are two kinds of variable in Java:

Simple variables

Reference variables

Simple variables are those whose type is simple, like int or char etc.

All other variables are reference variables (for example String variables or array variables).

When you make an assignment to a simple variable, the actual value is stored in the variable. For
example, the assignment int x=79; puts the value 79 into the variable x.

When you make an assignment to a reference variable, what is assigned is the address of the
object.

For example String s= "cat" will not put the value "cat" in the variable s but the String
"cat" will be stored somewhere in memory and s will contain the address of where "cat" has
been stored. So String s ="fred";String t=s; System.out.println(t); will print fred and
String s ="fred";String t=s; s="mary"; System.out.println(t); will print fred. In the
second example String t=s; makes variable t ‘point at’ the same as what variable s points at.
The assignment, s="mary" makes s point at something different, but t still points at what s
pointed at before.

Similarly the assignment a [] = new in[50] creates an array of 50 ints somewhere in RAM
and the variable a will contain the address of this array.

5.5 Exercises

What is the output of [LectureRefVars/test1.java]

What is the output of [LectureRefVars/test2.java]

5.6 Parameters Passed by Value

When parameters are passed in a method call, it is as if the method has some local variables
whose names are the same as the formal parameters of the method. Before executing the body of
the method these local variables are assigned the values of the corresponding actual parameters.

Consider a [Lecture9/intParams.java] The output of this is 3. This is because when we call
p(n) a copy of the value of n is made before we execute p. The variable n is not changed.

18

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureRefVars/test1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureRefVars/test2.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture9/intParams.java

Exercises on Chapter 5

5.7 Exercises on Chapter 5

Consider the following programs and see if you can explain their behaviour.

5.7.1 Arrays (1)

[Lecture9/arrayParams.java]

5.7.2 Arrays (2)

[Lecture9/arrayParams2.java]

5.7.3 Strings

[Lecture9/StringParams.java]

5.7.4 Test Array

[Lecture8/TestArray.java]

5.7.5 Test Int

[Lecture8/TestInt.java]

19

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture9/arrayParams.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture9/arrayParams2.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture9/StringParams.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture8/TestArray.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture8/TestInt.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

5.8 Summary

Having worked on Chapter 5 you will have:

Learned about local variables and the scope of variables.

Learned about simple variables.

Learned about reference variables.

Learned more about how the values of these variables are passed as parameters to methods.

20

Chapter 6

Bits, Types, Characters and Type Casting

6.1 Learning Outcomes

Chapter 6 explains:

that variables of different types have different sizes

about type casting

about characters and Unicode

why the read method returns an int.

6.2 Reading

[LO02] Chapter 1

[Fla05] pages 21-28

[Kan97] Chapter 2

[Smi99] Chapter 4

6.3 Introduction

The memory of a computer (Random Access Memory or RAM for short) is made up of a sequence
of consecutive bytes. These days (2007) a typical personal computer has about 512 megabytes of
RAM. This is roughly 512 million bytes, each consisting of 8 bits. A bit can have only two possible
values: 0 or 1. Every time you declare a variable in your program it is temporarily using up some
RAM. If you declare a large array it will take up lots of RAM. Try running
[LectureChar/BigMemory.java]

On my laptop, I get the following error message:

Exception in thread "main" java.lang.OutOfMemoryError:
at BigMemory.main(BigMemory.java:7)

6.3.1 Exercise: Maximum Array Size

Experiment to find out what the biggest int array you can have is. On my system it’s at least
15,000,000.

21

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureChar/BigMemory.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

6.4 Different Types Have Different Sizes

A variable consists of some bytes of RAM. When you declare a variable of a particular type, some
bytes of RAM are allocated to hold that variable. Depending on what the type is, different
amounts of RAM are allocated. A boolean variable, for example, needs only one bit since it has
only two possible values: true and false.

6.5 Characters

Java allows two bytes (=16 bits) to store characters. This means that in Java we can represent
216 different characters.

6.5.1 Exercise

Write a Java program to work out 216. So Java can represent 65536 different characters. This is
because Java tries to be international, so you will be able to write programs to output characters
in your own alphabet wherever you live (provided, of course, your operating system is correctly
set up to do so).

Unfortunately, on my computer I can only print 256 = 28 different characters. These are the ones
whose Unicode value is between zero and 255. For any other Unicode values my computer
simply prints out a question mark.

6.5.2 Exercise: Find All Characters

Write a program that prints out the character corresponding to every Unicode value between 0
and 216 − 1. On my computer, only the first 256 give anything. After that, I just get ’?’. How is
it on your computer?

6.6 Type Casting

To display the character whose Unicode value is 37 we do [LectureChar/Unicode.java]
(char)37 means the character whose Unicode value is 37. This is called type casting or simply
casting. To do type casting you write a type in brackets followed by an expression. The reason
you need type casting is that an expression on its own could be of many different types and Java
will treat it differently depending on what type it is. Therefore we have to tell the Java system
which type we want the expression to be treated as. Consider [LectureChar/AplusB.java] On
my computer, this prints out
195
ã

The reason for this is as follows: ’a’ + ’b’ is interpreted as the Unicode value of the character
’a’ + the Unicode value of the character ’b’. These two are added together to give the int 195.

22

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureChar/Unicode.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureChar/AplusB.java

More Type Casting

Which when we print gives 195. (char)(’a’ + ’b’) will be interpreted as the character whose
Unicode value is 195. Apparently, this character is ã.

6.6.1 Quick Question

The Unicode value of ’b’ is one more than that of ’a’. What are the Unicode values of a and b
respectively?

6.7 The Method read()

In this section we discuss the read() method. This method is used for inputting a single
character. Consider[LectureChar/Try.java] Here we are inputting just a single character
using read(), instead of the previous readLine() which reads a whole line. The method read()
returns the Unicode value of the character that the user typed in. So if you want to print out the
character the user typed in, the output of read() must be cast to char otherwise the Unicode
value will be written out as in [LectureChar/Try1.java]

6.7.1 End of File

If you are using Unix, try running LectureChar/Try1.java and typing in CTRL d (hold the control
key down and press d at the same time). This stands for end of file. The program prints:

You typed in -1

This means that read() returns -1 when end of file is reached. (If you didn’t understand this bit,
don’t worry. It will become clear in the chapter on Files.) This is why read() returns an int
rather than a char.

6.7.2 A Reason why read() Returns an int

A variable of type int occupies 32 bits. All the 216 values of type char are reserved for storing
real characters. No special value of type char is used to represent special things like representing
end of file. We therefore need a bigger type to be the return type of read().

6.8 More Type Casting

6.8.1 Question

Consider [LectureChar/EOF.java] What do you think is its output? Now consider
[LectureChar/Try3.java] If you input integers between 0 and 65535 inclusive you get the
same answer back. If you enter 65536 you get 0, if you enter 65537 you get 1, etc. This is
because the only whole numbers that can be stored as type char lie between 0 and 65535. If we
try to cast a number not in this range as a char, it will be ‘squashed’ into this range simply by

23

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureChar/Try.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureChar/Try1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureChar/EOF.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureChar/Try3.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

calculating its value mod 65536. This explains why entering -1 gives us back the value 65535,
since -1 mod 65536 is 65535.

Another way to think of this is that four bytes are used to store an int and only two are used to
store a char. When a int is cast to a char the two most significant bytes are discarded. So this
means that the two least significant bytes in the int representation of -1 are both 11111111. In
fact -1 is represented as the four bytes:
11111111 11111111 11111111 11111111. If you cast a value to a smaller type you may lose
information.

24

Exercises on Chapter 6

6.9 Exercises on Chapter 6

6.9.1 Research

Read pages 23 band 24 of [Fla05] to find out how big each type is.

6.9.2 Int to Boolean

Write a program to check whether or not an int can be cast as a boolean.

6.9.3 Boolean to Int

Write a program to check whether or not a boolean can be cast as an int.

6.9.4 Float to Int

Write a program to check whether or not a float can be cast as an int.

6.9.5 Int to Float

Write a program to check whether or not an int can be cast as a float.

6.9.6 Double to Float

Write a program to check whether or not a double can be cast as a float.

6.9.7 Float to Char

Write a program to check whether or not a float can be cast as a char.

6.9.8 Int to Short

Write a program to check whether or not an int can be cast as a short.

6.9.9 Next Biggest

What is the next biggest int, n, after 0, such that System.out.println(n) gives 0.

25

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

6.9.10 What is the Output?

Why is the output of [LectureChar/IntToShort1.java]

0
0
0
0
0
0
0
0
0
0

See Question 6.9.9 for the answer.

6.9.11 Largest Int

What does the following program output? [LectureChar/LargestInt.java]

26

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureChar/IntToShort1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureChar/LargestInt.java

Summary

6.10 Summary

Having worked on Chapter 6 you will have:

Learned that variables of different types have different sizes.

Learned about type casting.

Learned about characters and Unicode.

Learned why the read method returns an int.

27

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

28

Chapter 7

Files and Streams

7.1 Learning Objectives

Chapter 7 explains:

the purpose of a file

how to read a file a character at a time

how to read a file a line at a time

how to write to a file

how to write a simple spell-checking program, which checks that all words in a file have been
spelled correctly.

7.2 Reading

[CK06] Chapter 20

[LO02] Chapter 14

[DD07] Chapter 15

7.3 Introduction

A file is some data that is not in the memory of the computer. The most common place to find
files is on a disc. The difference between data on a disc and data in memory is that disc data
survives after you have finished executing the program. So if there is any information that needs
to be kept as a result of running a program, you had better write it to a file. Similarly, many
programs are required to manipulate data produced by other programs. This means that
programs are required to read data from files stored on discs.

Java also treats user input as if the data input is coming from a file; similarly, user output is
exactly the same as writing to a file.

7.4 Reading Files

Consider: [Lecture11/cat1.java] This program prints out the contents of a file called fff.dat
on the screen. When I run it

29

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/cat1.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

my name
is sebastian.
I live in
London.

is displayed. This is because that is what is in the file called fff.dat.

Look up the class FileReader in
http://java.sun.com/j2se/1.5.0/docs/api/java/io/BufferedReader.html. and
http://java.sun.com/j2se/1.5.0/docs/api/java/io/FileReader.html respectively. Notice that we
can use the Scanner with a FileReader as well as with System.in.

7.4.1 End Of File

If we are reading a file using nextLine() and we come to the end of the file, hasNextLine() will
return the value false. Therefore the code:

while (in.hasNextLine())
{
System.out.println(in.nextLine());

}

will repeatedly read a line from in(fff.dat) and write it out to the screen until the end of file is
reached.

Notice the extra throws Exception. This will be explained in Chapter 11. See what happens if
you leave it out.

7.5 Reading Files a Character at a Time

Consider [Lecture11/cat79.java] Here we are reading from file fff.dat a single character at
a time. As explained in Section 6.7.1, the method read() returns an int: either the Unicode
value of the character just read in, or -1 if we have reached the end of file. We must therefore
cast the value just read in as a character in order to print it out properly.

7.5.1 Question

If we forget to cast to char, as in [Lecture11/cat79u.java] what happens?

7.5.2 The Newline Character

The end of a line in a file is achieved using a special character called newline, written ’\n’ in
Java. so

println("hello");

is exactly the same as

30

http://java.sun.com/j2se/1.5.0/docs/api/java/io/BufferedReader.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/FileReader.html
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/cat79.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/cat79u.java

Writing to Files

print("hello");
print(’\n’);

7.6 Writing to Files

Once we have started off with

PrintStream out =new PrintStream(new FileOutputStream("hhh.dat"));

writing to the file hhh.dat is just like outputting to the screen. We can use the methods
out.print() and out.println().

7.6.1 Closing the File

There is one small difference between writing to a file and writing to the screen; when we have
finished writing a file, we must close it with

out.close()

If you forget to do this it is quite possible that you will find that after you finish executing your
program, your file will not have been written to. Here is a program to write to a file called
“hhh.dat” [Lecture11/cat83.java] After we have run it we will find a new file in the current
directory called hhh.dat with

this
file was written by
a Java program

written in it.

[Lecture11/cat.java] This program copies the contents of any file to standard output (i.e., it
displays any file on the screen). This program uses command line arguments. To display a
file called fred, type

java cat fred

[Lecture11/copy.java] This program copies the contents of any file to any other.

7.6.2 Swap all as and bs

Write a program called swapab.java that is the same as cat.Java except all the ‘a’s and ‘b’s are
swapped.

7.6.3 Example: Counting the Number of Lines in a File

To count the number of lines we can either simply read the file a line at a time, as in
[Lecture11/lineCount2.java] or alternatively, read the file a character at a time and keep a
count of the number of newline characters that we encountered, as in
[Lecture11/lineCount1.java]

31

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/cat83.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/cat.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/copy.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/lineCount2.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/lineCount1.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

7.6.4 Example: Counting the Number of Words in a File

To count the number of words in a file, we first need to decide what a word is. Let us say that a
word is any consecutive string of characters, not containing a newline character ’\n’, a tab
character ’\t’ or a space ’ ’. We need to read the file a character at a time and add one to a
counter every time we go from not being in a word to in a word.

We start off not in a word.

When not in a word, we stay not in a word if the next character we read is a newline, space or
tab.

When not in a word, we go in a word if the next character we read is a not a newline, space
or tab.

When in a word, we stay in a word if the next character we read is not a newline, space or
tab.

When in a word, we go not in a word if the next character we read is a newline, space or tab.

[Lecture11/wordCount.java]

7.7 Example: A Simple Spell Checker

There is a file Lecture11/words consisting of a big list of words in English (courtesy of Unix),
one per line. We can use it to write a simple spell checker. We are using the method

java.lang.String.startsWith().

The user simply types the beginning of the word he wants to check as a command line argument.
For example,

java spell freq

will print out all English words starting with freq. These are:

frequencies
frequency
frequent
frequented
frequenter
frequenters
frequenting
frequently
frequents

The answer is [Lecture11/spell.java]

7.8 A Slightly Better Spell Checker

Rather than expecting the user to enter the word they are looking for on the command line, we
can give the user a prompt > to enter a word. The program keeps giving the user another go. The

32

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/wordCount.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/spell.java

Example: A Program to Find Anagrams

program stops if the user simply presses return. [Lecture11/spell1.java]

7.9 Example: A Program to Find Anagrams

Here is a program that might be useful for people who do crossword puzzles. The user types in a
word and it finds all the anagrams of the word in the English dictionary. An anagram is simply a
re-arrangement, for example taste is an anagram of state. The program is based very closely
on the spell checker �spell1.java. The only difference is that instead of checking whether each
word in the dictionary starts with the word the user entered, we check whether the word is an
anagram of the word in the dictionary.

We have written a method called anagram which returns true if s and t are anagrams of each
other. We do this by converting s and t to arrays of characters, as and at. Then, for each
element of at, we see if we can find it in as. If we do, we change the corresponding element of
as to zero, so we never find it again. A zero is not a printable character. If at any stage we don’t
find a letter we are looking for, then it can’t be an anagram. [Lecture11/anagrams.java]

33

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/spell1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/anagrams.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

7.10 Exercises on Chapter 7

7.10.1 Third Line

Write a program that prints out the third line of fff.dat.

7.10.2 Hundredth Line

Write a program that prints out the hundredth line of ggg.dat.

7.10.3 Odd Lines

Write a program to print out the odd lines of ggg.dat.

7.10.4 Even Lines

Write a program to print out the even lines of ggg.dat.

7.10.5 Cat Choose

Write a program that prints out the contents of a file of the user’s choice.

7.10.6 Cat Command Line

Write a program that prints out the contents of the file whose name is typed on the command
line.

7.10.7 Third Char

Write a program that prints out the third character of fff.dat.

7.10.8 Hundredth Char

Write a program that prints out the hundredth character of ggg.dat. The file ggg.dat contains
all the integers from 1 to 100 in ascending order, one integer per line:

1
2
3

34

Exercises on Chapter 7

.

.

.
97
98
99
100

7.10.9 Odd Characters

Write a program to print out the ascii values of the odd chars of ggg.dat. The output is Make
sure you understand the output of this program.

7.10.10 Even Characters

Write a program to print out the ascii values of the even characters of ggg.dat. The output is
Make sure you understand the output of this program. Don’t forget - the newline character
counts as a character.

7.10.11 Swapchars

Write a program called swapchars.java using command line arguments that allows any two
characters to be swapped. For example if the program was called swapchars then to swap all ‘a’s
and ‘b’s in a file fred we would type java swapchars fred ab.

7.10.12 Manycat

Write a program called manycat.java that is the same as cat.Java except many files can be
printed out one after the other. For example to print fred1, fred2, and fred3 we would type
java manycat fred1 fred2 fred3.

7.10.13 Swapcase

Write a program called swapcase.java that is the same as cat.Java except that all lower case
letters are swapped for upper case and vice versa. (Hint: see Character class in [Fla05, Inc].)

7.10.14 ASCII

Write a program called ascii.java that is the same as cat.Java except that as well as printing
out each character, it also prints its Unicode value. What is the Unicode value for the newline
character?

35

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/ooo.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture11/eee.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

7.10.15 Remnewline

Write a program called remnewline.java that is the same as cat.java except that it doesn’t
print out the newline characters in the file.

7.10.16 Tenperline

Write a program called tenperline.java that is the same as remline.java except that it prints
10 characters on each line.

7.10.17 List Words

Write a program that prints out every word in a file, one word per line.

7.10.18 Assignment – Spell Checker

Write a spell checker that goes through a file and prints out all the words it finds that aren’t in
the dictionary.

7.10.19 Hard Assignment – A Better Spell Checker

Write a spell checker that goes through a file and every time it finds a word not in the dictionary
it prompts the user either to accept the word or enter a replacement.

36

Summary

7.11 Summary

Having worked on Chapter 7 you will have:

Understood the purpose of a file.

Learned how to read a file a character at a time.

Learned how to read a file a line at a time.

Learned how to write to a file.

Written a simple spell-checking program, which checks that all words in a file have been
spelled correctly.

37

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

38

Chapter 8

Sorting Arrays and Searching

8.1 Learning Objectives

Chapter 8 explains:

how to sort elements as they get put into an array

about one method of sorting an array

both linear and binary searching

about complexity analysis

that sorting arrays of ints and sorting arrays of Strings is essentially the same.

8.2 Reading

[LO02] Chapter 10

[DD07] Chapter 5

[Wu06] Chapter 15 Sections 15.1 and 15.2

[Bis01] Chapter 6.4

8.3 Introduction

The reason why it is good to sort things into some order is that it makes things easier to find.
Imagine a telephone directory where the names were just in any old order – impossible! Before
we sort any array of things, we need to decide what order to sort them in. For example if they are
ints, we may want ascending or descending order. If the things we are sorting are names, then
we may want to sort them in alphabetical order.

8.4 Ways of Sorting

8.4.1 Sorting as you Create

One way of making sure an array is sorted is to insert things in the correct place as we create the
array. As you can probably imagine, this will involve a lot of shuffling things around. Imagine ‘in
our hand’ we have a partially filled array consisting of the numbers we have so far read in and
sorted, and a new number that we have just read in. We want to put this new number into the
correct place in the array so that the array is still sorted. We need 3 methods:

39

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

1. A method to find where to put the new number in the array.

2. A method to shuffle to the right every element of the array from that point on.

3. And finally, a method that does all the work (by calling the other two methods), namely,
finding where to put the new number, shuffling everything one to the right from that point
on and updating the array with the new number to be inserted.

Each method has an extra parameter, which tells it where the next free element of the array is.
This is very useful because it tells us how far we need to shuffle, etc.
[Lecture8/SortOnInput.java]

8.4.2 Exercise

Write a program that tests Lecture8/SortOnInput.java.

8.5 Sorting an Array

Suppose we have read n numbers into an array a. To sort a we do n− 1 passes of the array. After
i passes we are sure that the first i + 1 elements of the array are in order. For the first pass we
compare the zeroth element of the array with all the later elements of the array (i.e. with the
first, second, ..., up to the last element of the array). If any of these elements is less than the
zeroth, we swap them. At the end of doing this we are guaranteed to have the smallest element
in the zeroth element of the array. We then move on to the first element of a and repeat the
process on the later elements of the array, namely, comparing a[1] with a[2], a[3] etc. and
swapping if necessary. At the end of this pass we have a[0] the smallest and a[1] the next
smallest. After n− 1 such passes the array will be completely sorted.

The code to do this is a loop within a loop and is shown in [Lecture8/SortArray.java] For the
outer loop we have variable i going from 0 to size-2. The inner loop has variable j going from
i+1 to size-2. This ensures that j always stays ahead of i and that all comparisons are made. if
we find that a[i]>a[j] we must swap a[i] and a[j].

8.5.1 Swapping

Swapping two memory locations, a[i] and a[j], for example, involves a temporary storage
place.

{int temp=a[i]; a[i]=a[j]; a[j]=temp;}

If we simply wrote

a[i]=a[j];
a[j]=a[i];

the locations a[i] and a[j] would both end up with the same value. There are many other
sorting algorithms not considered here. Please see other reference books for further information.

40

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture8/SortOnInput.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture8/SortArray.java

Searching

8.6 Searching

Having sorted our array we then want to check whether or not it contains certain items. What is
an efficient way of doing this?

8.6.1 Linear Searching

How do we look for someone’s name in a telephone directory? We do not just start at page 1, and
then 2, etc. until we find it. That is what we would have to do if the telephone directory was not
in order. The code to do this is: [Lecture8/LinearSearch.java] We are searching for the int
called thing in array a. This method returns a boolean, true if we find it and false if we don’t.
This code is interesting as we have a for loop with an empty body. The way we know that we’ve
found thing is that when we leave the for loop the last thing we found was thing. So we return
true if this was the case and false otherwise.

8.6.2 Binary Searching

One way to look for a name is to open the directory in the middle and pick a name n, say. If, by
some miracle, n is what we are looking for then we have finished! If the name we are looking for
comes before n we can repeat the process, thinking of the first half of the directory as the whole
directory (as we never have to look in the second half), or if the name we are looking for comes
after n we can repeat the process on the second half. Each time round the loop we are, in effect,
cutting the directory in half. This is a very quick way of finding what we want. For example, if
the dictionary had 2n entries, it would take at most n repetitions of the above process before we
either found what we want or discovered that it was not there. How do we know if something
isn’t there? We end up looking in a dictionary containing only one word and it’s not the one we
are looking for. We implement binary searching by having two int variables first and last to
tell us which part of the array to search in for the thing we are looking for. Initially we look in the
whole array. As we proceed, first and last get closer to each other.
[Lecture8/BinarySearch.java] Don’t forget, we are doing integer division.

8.6.3 Exercises on Binary Searching

1. Suppose the array a has 3 elements and thing is at a[0], what are the successive values of
mid?

2. Suppose the a has 4 elements and thing is at a[1], what are the successive values of mid?

3. Suppose the a has 17 elements and thing is bigger than everything in a, what are the
successive values of mid?

A more useful method would be to say where it found the thing rather than say true it’s there or
false it’s not. We can use -1 to mean that it’s not there. [Lecture8/BinarySearchPos.java]

41

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture8/LinearSearch.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture8/BinarySearch.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture8/BinarySearchPos.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

8.7 Efficiency of Different Algorithms: Complexity Analysis

An important question is how fast different algorithms are for searching and sorting. The speed
of an algorithm is measured not in number of seconds but rather in terms of the ratio of the
number of elements being searched through or sorted and the time. The sensible kinds of
question that can be asked are:

If we doubled the number of elements how much longer would it take?

or

If we trebled the number of elements how much longer would it take?

8.7.1 Linear Searching

In linear searching, we just start at the beginning and go through from ‘left to right’ until we find
what we are looking for. If we have say, 100 items, it will take on average 100/2=50
comparisons before we find what we are looking for. If, on the other hand, we have a million
items, it will take on average 500,000 comparisons. The average number of comparisons is
clearly proportional to the number of elements that we start with. If we double the number of
elements we will double the average number of comparisons before we find the element we are
looking for. If we treble the number of elements we (roughly) treble the amount of time taken to
find the element we are looking for. Such an algorithm is said to be of order n, written O(n).

8.7.2 Binary Searching

In binary searching, on the other hand, after each comparison, we halve the search space. If we
start off with 32 elements it will take at most five comparisons to find what we are looking for
(32 = 25, alternatively we can say log264 = 6), if we have 64 elements it will take at most 6
comparisons (64 = 26, alternatively we can say log232 = 5), if we have 4096 elements it will take
at most 12 comparisons, if we have 16 million elements it will take at most 24 comparisons!
(Since 224 > 16000000). Clearly this is much more efficient than linear searching. log2(n) is the
number that 2 must be raised to the power of to give n. The number of comparisons in binary
searching is proportional to log2(n). We say that binary searching is O(log2(n)). See [LO02]
pages 358-374 for a discussion of complexity analysis.

8.8 Exercises on Chapter 8

8.8.1 A Class for Searching and Sorting Arrays

Consider the class [Lecture8/ArraysOfIntsNew.java]

8.8.2 Test the Class

Write a program for testing your program.

42

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture8/ArraysOfIntsNew.java

Example Assignment

8.8.3 Sorting Arrays of Strings

Write a similar class which works on arrays of Strings.

8.8.4 Test your Class

Test your program by asking the user to enter some Strings and your program should sort them
and print a different message depending whether or not it can find the String "telephone".

Notice the only differences between the two are superficial – purely how we compare Strings as
opposed to ints.

8.8.5 Exercises (No Solutions)

1. Write a program that sorts its command line arguments into alphabetical order.

8.9 Example Assignment

Here is an extract from a course handbook:
For calculating the degree classifications
Each student does:

n1 first year half-units

n2 second year half-units

n3 third year half-units

The candidate’s overall mark is calculated as
ux+vy+wz
ub+wc+vd

where

x is the total marks of the best b first year half units.

z is the total marks of the best c third year half units.

y is the total marks of the remaining best d second and third year half units.

u, v and w are constants which vary from degree to degree. The Values you should use are:

static int n1=8;
static int n2=8;
static int n3=8;
static int b=6; /*Number of 1st year marks that count*/
static int c=6; /*number of 3rd year marks that count*/
static int d=8; /*number of remaining 2nd and 3rd year units that count */
static int u=1;
static int v=3;
static int w=5;

The degree classification is as follows:

Below 35 is a Fail

35– is a Pass Degree

43

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

40– is a Third Class Honours Degree

50– is a Lower Second Class Honours Degree

60– is an Upper Second Class Honours Degree

70– is a First Class Honours Degree

Write a Java program which inputs n1 first year half-unit marks, n2 second year half-unit marks,
n3 third year half-unit marks, and then outputs the degree classification.

8.10 Summary

Having worked on Chapter 8 you will have:

Learned how to sort elements as they get put into an array.

Learned one method of sorting an array.

Understood both linear and binary searching.

Had a brief introduction to complexity analysis.

Learned that sorting arrays of ints and sorting arrays of Strings is essentially the same.

44

Chapter 9

Defining Classes

9.1 Learning Objectives

Chapter 9 explains:

how to define your own classes
how to use constructors
about instance variables
about instance methods
how to defined classes in terms of other user-defined classes.

9.2 Reading

[LO02] Chapter 9
[Smi99] Chapter 5
[CK06] Chapters 6 and 7
[Hub04] Chapter 6
[Fla05] Chapter 3
[Kan97] Chapter 1

9.3 Introduction

We have already used objects often in this course. For example, when we wrote

DrawingWindow d = new DrawingWindow(500,500);

we were declaring a variable of type DrawingWindow and assigning it the value
new DrawingWindow(500,500).

How are things like DrawingWindow actually defined? They are defined as a class. The name of
the class will be DrawingWindow. The DrawingWindow class has a constructor with two
parameters. We can see this because of the expression new DrawingWindow(500,500).

9.4 An Example of Defining your own Class

We now give some examples of how to define and use classes.

45

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

9.4.1 WARNING!

For these examples to work, make sure you have got the directory (folder) which contains all the
Lecture directories in your CLASSPATH.

To run your programs in a sensible operating system like Unix you would type

java LectureSimpleObjects.printHouse

at the command line.

9.4.2 A Date Class

A Date consists of three fields: a day, a month and a year, all of which are ints:
[LectureSimpleObjects/Date.java]

The class Date has three fields: day, month, and year all of type int. We create an object of type
Date by giving values to fields using new. For example Date d = new Date(30,12,2009) or
Date e = new Date(17,1,2010). We are calling a constructor of the Date class. Inside our Date
class we have:

public Date(int d, int m, int y)
{
day=d;
month=m;
year=y;

}

This is a constructor. A constructor looks exactly like a method except that it does not have a
return type and its name is the same as the class. In Java, fields are often referred to as
instance variables.

9.5 Using a Class that you have Defined

9.5.1 Using the Date Class

[LectureSimpleObjects/printDate.java] Here we define a date d, assign it a value, and print
out its fields (instance variables).

Objects and Instances

We say variable d references (or points to) an object of type Date. We have created an instance of
the class Date. It is an instance of Date where the values of the fields are 1, 12 and 2003
respectively. When we call a constructor Date by saying new Date(1,12,2003) we are creating
an object and assigning values to its fields.

We can reassign to d in exactly the same way that we reassign to any other variable. For example
if we said Date d = new Date(17,1,2010), then a new instance of Date would be created and

46

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/Date.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/printDate.java

Using Classes in other Classes

this would now be ‘pointed to’ by variable d.

9.5.2 Dot Notation

To access the fields of an object, dot notation is used. In d.day corresponds to the day field of d
so has the value 1, d.month corresponds to the month field of d so has the value 12 and d.year
corresponds to the year field of d so has the value 2003.

9.6 Using Classes in other Classes

9.6.1 A Person Class

A person has a first name, a middle name and a family name, which are all Objects of type
String; a date of birth which is an Object of type Date (as defined in Section 9.4.2); and a sex
which is of type boolean.
[LectureSimpleObjects/Person.java] For a person there are two possible values for sex. We
have arbitrarily decided that true means female and false means male. For person, we have
defined two constructors. We can have as many constructors as we like provided that they all
have a different signature. In the second constructor however, we pass a String to give the sex.
If the String starts with an ’f’ or an ’F’ then it means female, otherwise male.

Using the Person Class

[LectureSimpleObjects/printPerson.java] Here we are creating a Date d and a Person p
whose date of birth is d. Notice how we get at the year that d was born using dot notation :
p.dob.year . We could have defined p without declaring d as follows:
Person p = new Person("John","Smith",new Date(1,12,2003),false);

9.6.2 A House Class

A house has a number, an array of persons and a number of rooms.
[LectureSimpleObjects/House.java] Here we have illustrated the use of the special keyword
this. Because we couldn’t think of different names, we have given the first two parameters, the
same names as the fields. To distinguish the formal parameter from the field name we say
this.number. This is the field of this Object called number.

9.6.3 A Street Class

A street has a name and an array of houses. [LectureSimpleObjects/Street.java]

47

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/printDate.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/Person.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/printPerson.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/House.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/Street.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

9.7 An Aside: Expressions for Arrays

We can assign an array explicitly, without giving it a name, as in
[LectureSimpleObjects/ArrayTest.java] The elements of the array are written as a list of
expressions between curly brackets and separated by commas. Using this we could define a class
Houses. [LectureSimpleObjects/Houses.java]

9.8 Define your House in a Single Expression

Your house can be defined ‘in one go’ as follows: [LectureSimpleObjects/MyHouse.java]
LectureSimpleObjects.MyHouse.it is now a constant object standing for my house. It can now
be used anywhere.

9.9 A More Complex Example with Instance Methods

Suppose you want to write a method sumandav that returns both the sum and average of an array
of ints. Clearly sumandav would take one int array parameter, but what would be the return
type of such a method? It has to return something that has two values:

1. An int to hold the sum

2. and a double to hold the average.

We cannot use an array in any obvious way as the return type, because all the elements of an
array must be of the same type and here we want two elements of different type: an int and a
double. To get round this problem we have to define our own class as follows:
[LectureSimpleObjects/IntAndDouble.java] As we will see, defining a class is like defining a
new type. Having defined a class we can then declare variables of that type in exactly the same
way that we declare variables of existing types. These variables can be assigned values
corresponding to Objects of the type.

9.9.1 The Package Statement

We have already studied the package statement in Chapter 4. The package statement at the
beginning tells us that IntAndDouble is part of a package called LectureSimpleObjects.
Because we have done this we will be able to refer to a type that we have just invented, called
LectureSimpleObjects.IntAndDouble. We will be able to use this type wherever we want. The
type LectureSimpleObjects.IntAndDouble has, in essence, become part of the Java
programming language for us. If we do not have this package statement we will not be able to
use this type anywhere apart from the directory that contains it.

9.9.2 Instance Variables

LectureSimpleObjects.IntAndDouble contains two variable declarations:

48

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/ArrayTest.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/Houses.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/MyHouse.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/IntAndDouble.java

A More Complex Example with Instance Methods

public int i;
public double d;

These declare two instance variables called i and d. These are the components (also called
attributes) of an Object of type LectureSimpleObjects.IntAndDouble. The reason they are
public is that, having created an Object of type LectureSimpleObjects.IntAndDouble, we want
to be able to refer to its two components separately. The components are often called fields or
members.

9.9.3 A Constructor

public IntAndDouble(int x,double y)
{
i=x;
d=y;

}

Whenever we define a new type like LectureSimpleObjects.IntAndDouble we will also want to
define a method which, when called, creates objects of this type. This is called a constructor. A
constructor always has the same name as the class containing it. In this case, all the constructor
does is assign values to the instance variables of the class. The values of the actual parameters in
a call to this constructor determine the values of the instance variables in any given instance of
the class. This is a very typical use of a constructor in Java.

9.9.4 Creating Objects with new

An expression like new LectureSimpleObjects.IntAndDouble(5,1.0) creates an instance of
an object of type LectureSimpleObjects.IntAndDouble with its i field set to 5 and its r field set
to 1.0. Here we are calling the constructor of LectureSimpleObjects.IntAndDouble with actual
parameters 5 and 1.0. Later we will see that a class can have arbitrarily many constructors.

Here is the code containing our method sumandav that we initially required.
[LectureSimpleObjects/SumAndAv1.java]

We work out the sum and average of the ints in our array parameter a and then create an
instance of an object of type LectureSimpleObjects.IntAndDouble with sum and av as the
values of its two fields, and then return this object as the result of our method sumandav.

We don’t really need the variable i. We can simply return the new expression itself, as in
[LectureSimpleObjects/SumAndAv4.java]

Again, if we want to make sumandav usable everywhere we had better include a package
statement at the beginning:

[LectureSimpleObjects/SumAndAv3.java]

Here is a program that can use SumAndAv3: [LectureSimpleObjects/UseSumAndAv.java] We
are using the method LectureNonVoidMethods.Arrays.readintarray() to read some tt ints
into an array and then calling LectureSimpleObjects.SumAndAv3.SumAndAv() to return the
sum and average. x.i is the int field of the IntAndDouble x where we store the sum, and x.d is
the double field where we store the average. To run this program you must type:

49

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/SumAndAv1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/SumAndAv4.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/SumAndAv3.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/UseSumAndAv.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

java LectureSimpleObjects.UseSumAndAv

9.9.5 Instance Methods

Our class IntAndDouble has another method called toString. This is an example of an instance
method. We can tell that it is an instance method because

It does not have the word static at the beginning of its definition.

Its name is not the same as the name of the class. This means that it is not a constructor.

To see how an instance method is called, consider
[LectureSimpleObjects/UseSumAndAv2.java] The call to toString is achieved using ‘dot’
notation. x.toString() is the toString() method of the Object x. Every time an object is
created, new copies of of the instance variables and instance methods are created. A class can
have many instance methods. The purpose of the toString() method is to convert
IntAndDoubles into Strings so that they can be printed out. We have chosen to print
IntAndDoubles in between parentheses and separated by a comma, first the int and then the
double. This was completely our choice.

9.9.6 Leaving out toString()

If we include an Object in a System.out.print() statement we can leave out the calls to
toString(). If x is an Object with its own toString() method then System.out.print(x) and
System.out.print(x.toString()) will behave in exactly the same way.

9.10 Exercises on Chapter 9

9.10.1 Exercise on IntAndDouble

Rewrite IntAndDouble.java (call it IntAndDouble1.java) so that it prints an IntAndDouble
object like this:

Double: 2.4367
Int: 6

Here is a program to test your answer. [LectureSimpleObjects/TestIntAndDouble1.java]
The output should be:

Double 4.5
Int 3

Double 6.15
Int 2

50

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/UseSumAndAv2.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/TestIntAndDouble1.java

Summary

9.10.2 Expressions For Objects

Write a program that contains

1. An assignment to variable x1 of a value of type Date, representing 2 March 2001.

2. An assignment to variable x2 of a value of type Person, representing the man Joseph Boteju
born on 2 March 2001.

3. An assignment to variable x3 of a value type Person, representing the man Pushpa Kumar
born on 17 May 1942.

4. An assignment to variable x4 a value of type Person, representing the woman Ola Olatunde
born on 27 August 1983.

Notice that for x2 and x3 we have chosen to use the different constructors for Person. We could
equally well have written:

Person x3 = new Person("Pushpa","Kumar",new Date(17,2,1942),false)

9.10.3 toString() Methods

Add toString() methods to each of the classes, Date, House and Street.

9.10.4 Exercises (no solutions)

1. Write toString() instance methods for the classes:

(a) Person

(b) House

(c) Street

2. Write a program for testing out your methods.

9.11 Summary

Having worked on Chapter 9 you will have:

Learned how to define your own classes.

Learned how to use constructors.

Learned about instance variables.

Learned about instance methods.

Defined classes in terms of other user-defined classes.

51

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

52

Chapter 10

Inheritance

10.1 Learning Outcomes

Chapter 10 explains:

how to extend a class

the use of the keyword super

more about instance methods

about method overriding

10.2 Reading

[LO02] Chapter 11

[Smi99] Chapter 12

[CK06] Chapter 8

[Hub04] Chapter 7

[Fla05] Chapter 3

[Kan97] Chapter 1

[NK05] Chapter 6

[DD07] Chapter 7

[Bis01] Chapter 9

10.3 Introduction

In the class LectureSimpleObjects.Person, a person has a first name and a surname. Suppose
we decided that we also wanted to include a person’s middle name as well as all the other
information like date of birth and sex. We could rewrite the whole class
LectureInheritance.person as in [LectureInheritance/Person1.java] Notice that, as well
as adding the extra field middlename, we have had to change the constructors by giving them an
extra parameter to accommodate this extra field. If we hadn’t done this, then we would not have
been able to give a person a middle name when creating him or her using new. We have kept the
import statement so that we can refer to the class LectureSimpleObjects.Date simply as Date.
A simpler way of achieving exactly the same goal is using inheritance:
[LectureInheritance/Person2.java]

53

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/Person1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/Person2.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

10.4 The extends keyword

By saying Person extends LectureSimpleObjects.Person we are saying that the new class

LectureInheritance.person

automatically possesses all the fields (but not the constructors) of the class

LectureSimpleObjects.person

10.5 The super Keyword

In the new constructors for our new class LectureInheritance.person we refer to a method
called super. This simply refers to the corresponding constructor of the class that we are
extending. Java will know which one we mean by the types of the parameters we pass it. This
one call to super will assign values to all the fields except middlename which we then update
separately. Here is a test program to check that the compiler understands our new class

LectureInheritance.person

[LectureInheritance/Test1.java] Because we have a package statement at the beginning,
Java assumes that any references to the class Person refer to the one in LectureInheritance
and not the one in LectureSimpleObjects. Don’t forget, to run it we must type

java LectureInheritance.Test1

We can still refer to the old type of person by giving the full name of the class, as in
[LectureInheritance/Test2.java]

10.6 More about Instance Methods

In Chapter 9 we introduced instance methods. Further examples are now given. Suppose we
wanted to work out a person’s age. To calculate a person’s age we define a method called age in
the class person. This method takes today’s date as a parameter. In order to work out someone’s
age we need today’s date (the parameter we are passing) and the person’s date of birth,
this.dob.
[LectureInheritance/Person.java] The method age does not have the word static in front
of it. This is how we know that it is an instance method. We can only use this method in
conjunction with an instance of the class person that has been created with new. Here we test
out our new instance method:
[LectureInheritance/Test3.java] We pass the age method of variable a, a date. This date is
30 August 2001. The program prints 10, since that is Fred’s age on 30 August 2001.

10.7 Shapes Revisited

Here is a class for drawing a horizontal line of stars:

54

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/Test1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/Test2.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/Person.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/Test3.java

Shapes Revisited

[LectureInheritance/HorizLine.java] Here is a program to test it:
[LectureInheritance/Test4.java] The output is:

10.7.1 Extending HorizLine (Method Overriding)

We may want to be able to draw horizontal lines with different characters apart from stars. In
fact we want to be able to specify different characters to occur at the ends of the line from the
middle. So we can draw lines like

&......&
&.............&

which have an & at either end and dots in the middle, or like

* *
* *

which have asterisks at either end and spaces in the middle.
Consider [LectureInheritance/BetterLine.java] Since BetterLine extends HorizLine it
already has a length field and two instance methods draw() and drawln(). We add two new
fields of type char for specifying the end and middle characters of the lines we want to draw.
However, we do not want to use the draw and drawln methods of HorizLine since they only
draw asterisks. We want to draw endchars at either end and middlechars in the middle. So we
override the draw method of HorizLine. That is, we define a method which has exactly the same
name and signature in the new class as in the class we are extending. Interestingly, we do not
need to explicitly override Drawln (though we can if we want) since that calls Draw which has
been overridden. To test it we can use
[LectureInheritance/Test5.java] The output is

-:::::::::::::
* *
* *

For drawing our hollow rectangles and triangles we can use a HollowLine. This can be defined
by extending LectureInheritence.BetterLine as follows:
[LectureInheritance/HollowLine.java] A Hollowline of length n is a BetterLine of length
n with the end character being a ’*’ and the middle characters a ’ ’. Here, the call to super is a
call to BetterLine.

10.7.2 Rectangles of Stars

We can use LectureInheritence.HorizLine to make a class LectureInheritence.Rectangle
as follows: [LectureInheritance/Rectangle.java] This has two int fields, height and
width. In its Draw method, first we create an instance m of HorizLine of length equal to the
width of the rectangle. Then we have a loop which draws this horizontal line height times.
Clearly, this will produce a solid rectangle of stars. A program to test our rectangle class is:
[LectureInheritance/Test6.java] The output is:

55

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/HorizLine.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/Test4.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/BetterLine.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/Test5.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/HollowLine.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/Rectangle.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/Test6.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

10.7.3 Better Rectangles

A better rectangle is one made up of BetterLines.
[LectureInheritance/BetterRectangle.java] We have deliberately made a better rectangle a
generalisation of a hollow rectangle. For the first and last (top and bottom) lines, we draw a
betterline with the end and middle characters both set to ends. For the middle lines we draw a
BetterLine with the end character set to ends and the middle character set to middle:
[LectureInheritance/Test7.java] The output is:

!!!!!!!
!.....!
!.....!
!.....!
!!!!!!!

* *
* *
* *
* *
* *

====
=88=
=88=
=88=
=88=
=88=
====

10.7.4 Hollow Rectangles

We can extend the class BetterRectangle to produce Hollow Rectangles as follows:
[LectureInheritance/HollowRectangle.java]

56

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/BetterRectangle.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/Test7.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureInheritance/HollowRectangle.java

Exercises on Chapter 10

10.8 Exercises on Chapter 10

10.8.1 Test HollowRectangle

Write a program using HollowRectangle whose output is

* *
* *
* *
* *

* *
* *
* *
* *
* *
* *
* *
* *
* *
* *

10.8.2 Extend Rectangle to Square

Extend Rectangle to produce a class Square

10.8.3 Extend BetterRectangle to BetterSquare

Extend the class BetterRectangle to produce a class BetterSquare.

10.8.4 Left Bottom Triangles

1. Use a BetterLine etc. to define a class HollowLeftBottomTriangle.
(Do it in a similar way by extending a class called BetterLeftBottomTriangle.)

2. Similarly define a class called SolidLeftBottomTriangle which is entirely made up of stars.

3. Write a program to test your classes.

57

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

10.9 Exercises (no solutions)

10.9.1 Left Top Triangles

Repeat exercise 10.8.4 for left top triangles.

10.9.2 Right Triangles

Repeat exercise 10.8.4 for Right top and right bottom triangles.

10.10 Summary

Having worked on Chapter 10 you will have:

Learned how to extend a class.

Learned the use of the keyword super.

Learned more about instance methods.

Learned about method overriding.

58

Chapter 11

Exception Handling

11.1 Learning Objectives

Chapter 11 explains:

how to handle exceptions using try and catch

what it means to throw an exception.

11.2 Reading

[CK06] Chapter 15

[Smi99] Chapter 13

[Hub04] page 230

[Fla05] pages 56-60

[NK05] pages 103-115

[Kan97] Q2.22-Q2.26

[DD07] Chapter 12

11.3 Introduction

An exception is a signal that an error has occurred. To throw an exception means to signal an
error. To catch an exception means to handle the error, i.e. to take action to recover from the
error.
Consider the program [LectureExceptions/test1.java] This program compiles correctly but
when we run it we get:

Exception in thread "main" java.lang.NumberFormatException: dl;fkas;lkf
at java.lang.Integer.parseInt(Integer.java:405)
at java.lang.Integer.parseInt(Integer.java:454)
at LectureExceptions.test1.main(test1.java:7)

A java.lang.NumberFormatException has been thrown because we are trying to parse the
String dl;fkas;lkf as an int.

Now consider the program [LectureExceptions/test2.java] This program gives the
compilation error:

59

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureExceptions/test1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureExceptions/test2.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

test2.java:7: unreported exception java.io.IOException; must be caught or declared to be thrown
int s =System.in.read();

^
1 error

A cure is to add throws IOException as in [LectureExceptions/test3.java] An alternative is
to catch the IOException as in [LectureExceptions/test4.java] Here we use try and catch.
Now consider [Lecture2/Add1ForceOkLoop.java] In this program we have a try clause
containing int x=Integer.parseInt(s); if the String s does not parse correctly to an integer
(i.e. it contains characters which are not digits), then an exception will be thrown. The exception
is caught by the catch clause which displays a message telling the user that they have made a
mistake. We could write a method with one input parameter of type String which returns true
if the String represents an int and false otherwise:
[LectureExceptions/IntException.java] We can use this method to produce the same
behaviour as in Lecture2/Add1ForceOkLoop.java. See [LectureExceptions/test5.java]
This code is slightly inefficient because we are parsing the String twice when it is correct.
Explain this!

11.4 ‘File Not Found’ Exceptions

Consider the program:
[LectureExceptions/fileNotFound.java] Because the file silly.dat does not exist, when
we run this program, it says:

Exception in thread "main" java.io.FileNotFoundException: silly.dat (No such file or directory)
at java.io.FileInputStream.open(Native Method)
at java.io.FileInputStream.<init>(FileInputStream.java:64)
at java.io.FileReader.<init>(FileReader.java:31)
at LectureExceptions.propag1.main(propag1.java:9)

Now consider the program [LectureExceptions/catchFileNotFound.java] Now the
program, when it runs, prints out

File not found

because we are catching the FileNotFoundException. Now we rewrite the program so that it
asks the user to enter the file name.
[LectureExceptions/catchUserFileName.java] Now the program asks the user to enter the
file name. If the user enters a non-existent file name then the error is caught with a message
saying that the file doesn’t exist. We now rewrite the program to force the user to enter an
existing file name. [LectureExceptions/forceUserFileName.java] Here we stay in a loop
until an existing file name is entered.

11.5 Throwing Exceptions

We can handle conditions by throwing exceptions when conditions are encountered, and catching
them. Consider [LectureExceptions/catchEOF.java] This handles the ‘End of file’ condition.

60

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureExceptions/test3.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureExceptions/test4.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture2/Add1ForceOkLoop.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureExceptions/IntException.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureExceptions/test5.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureExceptions/fileNotFound.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureExceptions/catchFileNotFound.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureExceptions/catchUserFileName.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureExceptions/forceUserFileName.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureExceptions/catchEOF.java

Summary

11.6 Exercises on Chapter 11

11.6.1 ‘File Not Found’ Exceptions

Re-do each exercise in Chapter 7, but this time catch the ‘file not found’ exceptions; where the file
name is input by the user, force the user to re-enter a file name until it is found otherwise print a
suitable error message.

11.7 Summary

Having worked on Chapter 11 you will have:

Learned how to handle exceptions using try and catch.

Learned what it means to throw an exception.

61

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

62

Chapter 12

Vectors

12.1 Learning Objectives

Chapter 12 explains:

the similarities and differences between a Vector and an array

how Vectors are used for storing arbitrarily large amounts of data.

how to sort Vectors

how to manipulate the contents of files by storing them in a Vector and then manipulating
the Vector

a way of writing a complete system for processing student marks.

12.2 Reading

[Smi99] Chapter 21 and Chapter 7

[Hub04] Chapter 8

[Fla05] Page 160-178, 824

[Kan97] Q2.13-Q2.19

[DD07] Chapter 18

[NK05] Chapter 8

12.3 Introduction

A Vector (see java.util.Vector) is a structure a bit like an array for storing many Objects. The
main differences between Vectors and arrays are:

1. Vectors are dynamic: they can grow and shrink in size (number of elements) while the
program is running.

2. All elements of a Vector are of type Object. Arrays can have elements of type int, char etc.
Vectors cannot.

Vectors can be used whenever you would have used an array but do not know in advance how
many elements you need to store. The most useful instance methods of class Vector are:

1. void addElement() Adds an Object to the end of a Vector

2. Object elementAt(int i) Returns the ith element

3. int Size() Returns the number of elements

63

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

4. void removeElementAt(int i) Removes the ith element

5. void setElementAt(Object x, int i) Changes the ith element to x.

12.4 Autoboxing, Unboxing and Generics

Before Java 1.5, handling Vectors and other similar types was much more difficult than it is now.
With Autoboxing, Unboxing and Generics, things have become much easier.

Consider [Lecture9/LargestInVec2.java] This program allows us to store arbitrary amounts
of data into the Vector. We can go on entering integers for as long as we like. The input
terminates when the user types a non-integer value. The program then prints out the largest
value entered. It is exactly the same algorithm that we used for finding the largest number in an
array.

Here we are declaring v to be a Vector that only holds ints. Autoboxing and unboxing allow us
to think of the type Integer as int. Really Vectors can only hold Objects but with autoboxing
and unboxing we can pretend that they can hold simple types like int and char.

If we try and put a non-integer value in a Vector <Integer> we get a compilation error:
[Lecture9/errorVec.java]

errorVec.java:8: addElement(java.lang.Integer) in java.util.Vector<java.lang.Integer>
cannot be applied to (java.lang.String) v.addElement("www");

12.5 Untyped Vectors

Consider [Lecture9/Vector1.java] Here, since we have not specified the type of the elements
that we can put in the Vector we can use it to store all types of Object. Here we are adding five
Integers, a Character and two Strings.

12.5.1 Exercise

Work out the output of Lecture9/Vector1.java above.

12.6 Sorting Vectors

In the program SortVector below, the algorithm we use for sorting Vectors is exactly the same
as the one we used for arrays. The sort method, sort(v) returns a Vector which has the same
elements as v but is sorted in ascending order. The parameter to sort is of course not changed by
sort. The first thing that the method sort does is make a copy of v using its clone method, w=
v.clone(). Note the use of the method Vector.setElementAt. [Lecture9/SortVector.java]
What does the following program do? [Lecture9/RefParams.java]

64

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture9/LargestInVec2.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture9/errorVec.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture9/Vector1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture9/SortVector.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture9/RefParams.java

Manipulating Files Using Vectors

12.6.1 Exercises on Chapter 12

Write a program that reads some numbers (terminated by a non-integer), stores them in a
Vector and prints out:

1. the smallest

2. the sum

3. the average.

12.6.2 Exercises (no solutions)

1. Write a program that asks the user to enter some numbers (terminated by a non-integer) and
then prints them out in the opposite order to which they were entered. For example, if the
user types 1 4 3 5 the output should be 5 3 4 1.

2. Write a program that asks the user to enter some numbers and then prints them out in the
opposite order to which they were entered, and then prints them out in the same order they
were entered. For example, if the user types 1 4 3 5 the output should be 5 3 4 1 1 4 3 5.

3. Write a program where first the user enters some numbers and then the program asks the
user to pick a number. The program tells the user how many of these numbers the user
entered. For example, if the user entered 7 4 4 3 1 7 and then the number chosen was 7,
then the program would output 2 because the user entered two sevens. If the number chosen
by the user was 8, then the program would output 0.

4. Write a program where the user types in a number of Strings stored in a Vector of Strings
and then the program prints out the longest String.

5. Write a method readSort which is like Input3.readInVectorOfIntegers but it sorts them
into ascending order as it puts them into the Vector.

6. Write a method that sorts Vectors in descending order.

7. Write a method that does a binary search for an Integer in a Vector. It must return the
position of the Integer in the Vector and -1 if it is not there. Assume the Vector is sorted in
ascending order.

8. Write a method for removing all duplicates from a Vector of Objects.

12.7 Manipulating Files Using Vectors

We now show how problems involving file manipulation can be tackled by storing the contents of
the file in a Vector, then manipulating the Vector and finally outputting the resulting Vector
back to the file.

12.7.1 Character by Character

Consider [Lecture12/fileToVector.java] Here, the method
fileToVector.fileToVector(s) reads from the file, s, a character at a time and returns the
Vector consisting of the same sequence of Characters that were in the file s. Note the Vector
contains Characters not chars.

65

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture12/fileToVector.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

12.7.2 Line by Line

Now consider [Lecture12/lines.java] Here we are reading the file a line at a time. Each
element of the resulting Vector will be a String. So there will be as many elements of the
resulting Vector as there are lines in the original file. When we print out the contents of the
Vector we must therefore use System.out.println if we are to preserve the lines of the original
file. If the original file contained no end of line characters then the whole file would end up being
stored in the zeroth element of the Vector.

12.7.3 Exercises

12.7.4 Longest Line in a File

Write a program that reads a file into a Vector of Strings, one element per line and then finds
the longest line.

Longest Word in the English Language

Use the program above to find the longest word in the English language.

12.7.5 Occurrences of Printable Characters in a File

Write a program occ1.java which prints out the number of occurrences of each printable
character in a file. Assume the printable characters are those whose Unicode values lie between
30 and 126 inclusive. For example, java Lecture12.occ1.java longestline.java should
produce:

12.7.6 Longest Word in the English Language

Use Lecture11/words and Lecture12/longestline.java to find the longest word in the
English language.

12.7.7 Occurrences, Most Popular First

Using a Vector, write another program like Lecture12/occ1.java which prints out the
occurrences of each character in a file but this time prints them in order of popularity. Order the
output so that the most frequently occurring character comes first etc.

12.7.8 Do the Same Without a Vector

Write a program that does the same as Lecture12/occ2.java but this time store the information
from the file directly into the array occs.

66

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture12/lines.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture12/soutput.java

A System for Processing Student Marks

12.7.9 Frequency

Write a program freq.java which you can use to find the frequency as a percentage of each
character in a piece of text.

12.7.10 Finding Words in Dictionary

Write a program find.java so that java find ../Lecture11/words fred will say ‘yes’ if fred is
an English word (i.e. if it finds it in the dictionary) and ‘no’ if it isn’t.

12.7.11 Exercise (no solution)

Write a program firstlast.java that can be used to print out all English words that start and
end with the same letter. The choice of letter should be a command line argument. So, for
example, java firstlast /usr/dict/words w should print all English words that start and end
with the letter ’w’.

12.8 A System for Processing Student Marks

We now develop a user-defined class for holding information about students on the Java course.
For each student we hold the following information:

name

exam mark

coursework mark

total mark

grade.

The student’s grade and total mark is worked out from the exam mark and the coursework mark.
The total mark is 60% of the exam mark plus 40% of the coursework mark.

The grades are calculated in using the total mark as follows:

A: total ≥ 70%

B: 60% ≤ total < 70%

C: 50% ≤ total < 60%

D: 40% ≤ total < 50%

E: 35% ≤ total < 40% and both exam and coursework are not less than 35

F: 0% ≤ total < 35% or either exam or coursework less than 35

67

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

12.9 The Class Student

We define a class called Student which has five fields, one constructor, Student, and two static
methods, called grade and total which work out the grade and total for a student. These two
static methods are called by the constructor Student. The constructorStudent has three
parameters: the name, coursework mark and exam mark of the student. Student also has an
instance method called toString() which converts a Student to a String. Its output is a String
consisting of the five fields of a Student. Here is the class [Lecture13/Student.java]

12.9.1 Printing Objects

If we try to print an Object, first Java tries to apply the Object’s toString() method to convert it
to a String for printing. Try System.out.println(new Student("fred",60,45));

12.9.2 The Raw Data File marks

The result of each student has been stored in a text file called marks which is a file containing the
following information about a student:

1. name

2. exam mark

3. coursework mark.

Each of these fields is on a separate line.
Here is a program called Results. It is a program which I used to process the marks file. It prints
out each student’s name, exam mark, coursework mark, total and grade.
[Lecture13/Results.java] Each time round the loop we read three Strings from the file:

1. The student’s name

2. The student’s exam mark

3. The student’s coursework mark

We then create a Student out of these using new Student(name,exam,cwk) and print this out.

12.10 Exercises

12.10.1 Students in Vector

Write a class studentsinVector which has one field called Students of type Vector (each
element of which is a Student) and a constructor which reads from a file and then stores all the
Students in the Vector, Students.

68

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture13/Student.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture13/Results.java

Summary

12.10.2 Print Students in Vector

Write a program printstudentsinvector.java which stores all the students in a Vector and
prints out the results in the Vector.

12.10.3 Print Sorted Students in Vector

Write a program printsorrtedstudentsinvector.java which stores all the students in a
Vector and prints out the results in the Vector but this time sorted in descending order of total
mark.

12.11 Exercises (no Solutions)

12.11.1 Finding Students whose Name Starts with a Particular Prefix

Write a program findstudent.java so that java findstudent marks Jones will print out the
information for all the students whose name starts with Jones. The file marks is where the raw
data is kept.

12.11.2 Sorting as you Input

Rewrite studentsinVector so that it sorts by ascending order of mark by putting students in the
right place in the Vector as they are read from the file.

12.12 Summary

Having worked on Chapter 12 you will have:

Learned the similarities and differences between a Vector and an array.

Seen how Vectors are used for storing arbitrarily large amounts of data.

Learned how to sort Vectors.

Learned how to manipulate the contents of files by storing them in a Vector and then
manipulating the Vector.

Written a complete system for processing student marks.

69

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

70

Chapter 13

Conclusion

You have now come to the end of the both volumes of the Java Subject Guide. By now you
should be familiar with many Java programming concepts.

13.1 Topics

The first volume of the Java Subject Guide considered many of the basic concepts of
programming. These included:

Arithmetic and Boolean Expressions

Variables and Types, Declarations and Assignments

Input and Output

Conditional Statements

Loops: Simple and Nested

Useful Built-in Methods

Arrays

Defining and Using Methods

and the second volume of the Java Subject Guide introduced:

Command-line rguments

Recursion

Packaging Programs

More about Variables

Bits, Types, Characters and Type Casting

Files and Streams

Sorting Arrays and Searching

Defining Your Own Classes

Inheritance

Exception Handling

Vectors

13.2 Complete All the Challenging Problems!

In order to make sure that you are prepared for second year programming, make sure you
attempt and complete all the challenging problems on page 75 before you start year two of
the programme. This is the best way to prepare!

71

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

72

Part II

Appendices

73

Appendix A

Challenging Problems

We learn to program, not only by reading books or subject guides, but mainly by trying to solve
programming problems. This is why I have provided you with some challenging problems. For
each problem I will give you some hints as to how I would go about solving it. I hope you find
these hints useful, but feel free to solve the problems your own way!

Each challenging problem has two numbers, for example [1,5] associated with it. This means
that you need to have studied as far as Volume 1 Chapter 5 before you attempt this problem.

A.1 Try out a Program [1,2]

Here is a program that produces pretty colours: [LectureElements/pretty.java] Type it in
and then compile and run it on you computer. Make sure you set the CLASSPATH correctly!

A.2 Rolling a Die [1,5] (dice.class)

Write a program which emulates rolling a die. Every time the program is run, it outputs a
random number between 1 and 6.

A.2.1 Hint

This program will have just a simple main method that prints out a random number between 1
and 6. You need to find out how to generate a random number between 1 and 6 and simply print
the number out. Look in the Sun Java documentation for the class java.util.Random. See if you
can find an instance method for generating a random number.

A.3 Leap Years [1,7]

Write a program in which the user enters a year and the program says whether it is a leap year or
not.

A.3.1 Hint

Look up the rules for deciding whether a year is a leap year. Try typing rules for leap year into
Google or some other search engine. Part of the rule will say the year, n, must be divisible by 4.

75

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureElements/pretty.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/dice.class

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

Having found the rules you need to think of a boolean expression involving the year n which is
true if n is a leap year and false otherwise. It will be of the form

n%4==0 && ...

The program will first ask the user to enter an integer. You will store the input in an int variable,
n. Then you will use the above boolean expression in an if statement, to decide whether to print
yes or no.

You do not, at this stage, need to worry about handling illegal input from the user.

A.4 Drawing a Square [1,7]

Using lineTo and moveTo, from element.jar, write a program that asks the user to enter an
integer size which draws a square of that size.

A.4.1 Hint

Assuming the square starts at co-ordinate (origX, origY), you need to work out (not very
difficult!) the co-ordinates of the three other corners of the square assuming its side has length n.
Four calls to lineTo is more or less all you need.

A.5 How Old Are You? [1,7] (age.class)

Try out this program:

import java.util.Calendar;
class age
{

public static void main(String [] args)
{
Calendar rightNow = Calendar.getInstance();
int year =rightNow.get(rightNow.YEAR);
int month =rightNow.get(rightNow.MONTH);
int day =rightNow.get(rightNow.DAY_OF_MONTH);
System.out.println(year);
System.out.println(month);
System.out.println(day);

}

}

Write a program which asks the user for their date of birth and then tells them how old they are.

76

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/age.class

Mouse Motion [1,8] (mouseInRect.class)

A.5.1 Hint

Having input the user’s date of birth, you will have three integers day, month and year from the
user and three integers from the system (see above). You then subtract this year from the year
entered by the user and then subtract one if the month entered by the user is after this month or
the months are the same and the day entered by the user is after today’s day. (Careful about how
the months are represented!)

A.6 Guessing Game [1,8]

Write a program that tries to guess the number thought of by the user. The number is between 0
and 1000. If the computer’s guess is too high, the user should enter 2. If the computer’s guess is
too low, the user should enter 1. If the computer’s guess is correct, the user should enter any
integer except 1 or 2. Print out how many guesses it took the computer. Also print out if the user
cheated!

A.6.1 Hint

You need a loop. You can use a boolean variable finished to get out of the loop. Before you
enter the loop set finished to false. The loop should look like this:

while(!finished)
{

}

When the game is over, set finished to true. Then the loop will terminate.

Store the lowest and highest possible values. Each time choose half way in between. Use integer
division by two to achieve this. Half way in between will be (highest + lowest)/2. Depending on
whether the user enters 1 or 2 there will either be a new highest or a new lowest. If the computer
doesn’t guess by chance, eventually the highest and the lowest will become the same value. If
this is not the right answer then the user must have cheated!

A.7 Mouse Motion [1,8] (mouseInRect.class)

Write a Java program which displays a small square of a colour of your choice. The left hand
corner of the square must have one co-ordinate equal to the day of the month you were born, the
other co-ordinate of the left hand corner must be the integer corresponding to the month you
were born (Jan=1, Feb=2, etc.). The side of the square must correspond to your age in years.
The square must change to a different colour when the mouse is inside it and back to the original
colour when the mouse is not inside it. The program must keep responding to the mouse in this
way. You should use the element package and the Drawing window described in Chapter 3.

77

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/mouseInRect.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/mouseInRect.class

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

A.7.1 Hint

Your program should contain an infinite loop, so it goes on for ever.
You will probably use the following methods from the element package:
• getMouse()
• contains
• setForeground
• fill

You will need to work out some boolean expressions to test whether the mouse is inside the
square that you have drawn. See the contains method for this.

A.8 Maze [1,8] (maze.class)

Write a Java program that represents a maze. The maze must have a start and a finish. The idea
is to move the mouse from the start to the finish without going outside the maze. The program
should give an error message if the mouse goes off the path of the maze and force the user to
start again by ending the program. If the user gets from the start to the finish successfully the
program should display to the user how long it took in seconds.

A.8.1 Hint

First make a simple shape for the maze. Mine was like this:

DrawingWindow d = new DrawingWindow(500,500);
Text s = new Text("start");
Text f = new Text("end");
s.center(new Pt(250,400));
f.center(new Pt(255,200));
Circle start= new Circle(250,400,30);
Rect mid1 = new Rect(240,200,10,200);
Circle finish= new Circle(255,200,30);
d.fill(start);
d.fill(mid1);
d.fill(finish);
d.setForeground(Color.white);
d.draw(s);
d.draw(f);

Then have a loop which gets the position of the mouse and checks where it is. Use the
contains() method for this. For example, start.contains(p1) will be true if and only if point
p1 is inside the start circle. etc. Use long b=System.currentTimeMillis(); to get the current
time.

A.9 Hangman [1,9] (hangman.class)

The computer thinks of a word. (In fact, ‘hard-wire’ the word into your program.) The user tries
to guess the word by trying a letter at a time. If the letter is in the word, then the computer

78

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/maze.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/hangman.class

Roman Numerals [1,9] (Roman.class)

shows the user where it fits. Carry on in this way until either the user runs out of goes (say 9) or
the user guesses the word.

A.9.1 Hint

This is an exercise in using the methods in java.lang.String. I start off with two Strings, orig
which is the computer’s guess and another one, user, which is simply a String of the same length
consisting of dashes. "-------". Every time the user has a guess, if the character they input is in
orig I replace the corresponding dash in user by the input letter. The game is over when the two
Strings are equal or the user has used up all the goes.

Again, you need a loop. You must read in a character typed by the user. The way I did this was
with:

in.nextLine().charAt(0)

i.e. the first character typed in by the user.

The other methods that I needed were length and compareTo. To make it easier I defined two
methods:

static char getGo()

which prompts the user for input and returns the character the user entered, and

static String upDate(String sofar, String orig, char g)

which returns the new String for sofar assuming the original string is orig and the character
guessed by the user is g. To compute this we loop through orig looking for g. If we find g we
update sofar.

A.10 Roman Numerals [1,9] (Roman.class)

Romans used a strange way of representing numbers which we call roman numerals. In roman
numeral notation, M stands for 1000, D for 500, C for 100, L for 50, X for 10, V for 5 and I for
one. In order to compute the integer value of a roman numeral, you first look for consecutive
characters where the value of the first is less than the second. Take, for example XC and CM. In
these cases you subtract the first from the second, so for example XC is 90 and CM is 900. Having
done that, you simply add up all the values of such pairs and then to this add the values of the
remaining individual roman numerals so, for example, MMMCDXLIX is 3449 and MCMXCIX is
1999.

Write a program which allows the user to enter a roman numeral and then displays its decimal
value.

A.10.1 Hint

Write a method static int value(char a) which for each single character roman numeral
returns its decimal value. This method will use a sequence of if statements (or a switch

79

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/Roman.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/Roman.class

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

statement if you like).

You can then have another method static int value(String a) which returns the value of a
complete roman numeral. All you have to do is loop through the String, a character at a time.
Every time you must look at the next character (if there is one) as well. If the next character is
greater than the current one then you must subtract the values and ‘jump’ two ahead. Otherwise,
add the value of the current numeral and jump one ahead.

I do not want you to do any error checking. As long as the program correctly calculates the
values of proper roman numerals you will have completed this challenge.

A.11 Shuffling a Pack of Cards (1) [1,10] (deal1.class)

Write a program that shuffles 52 cards randomly. Your program should output the 52 having
been shuffled. You may assume that the cards are numbered 1 to 52.

A.11.1 Hint

The way I did it was as follows:
Create an array a of 52 integers. For each i store i at position i in the array. Generate a random
number k between 1 and however many cards left in the array (use java.util.Random). Print
out a[k]. Then move all the elements of the array which are to the right of k one to the left.
(a[i] = a[i + 1]), in effect deleting a[k]. Subtract one from the total number of cards left in the
array. Repeat this 52 times.

A.12 Shuffling a Pack of Cards (2) [1,10] (deal2.class)

Write a program that shuffles 52 cards randomly. Your program should output the 52 having
been shuffled. This time you must output Strings like “five of clubs” or “ace of spades” instead of
just a number.

A.12.1 Hint

I used two arrays to store the names values and suits of cards:

String [] val = {"ace","two","three","four",
"five","six","seven","eight","nine", "ten",
"jack", "queen","king"};

String [] suit ={"clubs","diamonds","hearts","spades"};

We then need a way of converting numbers from 1 to 52 into these. To do this I used arithmetic;
dividing by thirteen for the suit and taking the remainder for the value.

80

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/deal1.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/deal2.class

Noughts and Crosses (1) [1,11] (tictac.class)

A.13 Noughts and Crosses (1) [1,11] (tictac.class)

Write a program that allows two people to play noughts and crosses on the computer. Your
program should stop illegal moves and detect when the game is over and output who has won.

A.13.1 Hint

I represent the noughts and crosses board as an array of nine integers. I use 0, 1 and 2 to
represent empty squares, noughts and Xs respectively. I have written some useful methods
including:

static void initialise() //initialises the board

static boolean boardFull(int [] b) //returns true iff b is full

static boolean lineOfThree(int [] b,int x, int y, int z) // returns true iff pos
x,y,z are all the same but not empty

static boolean isWon(int [] b) // check whether someone has won

static boolean isFree(int [] b, int x) // checks whether x is a free square in b

static int [] userGo(int [] b,int xoro) accepts input from user and returns
updated board

static void drawBoard(int[] b) // draws the board on the screen

I’m feeling generous at the moment, so I’ll even give you my main method!

public static void main(String [] args)
{

initialise(); int xoro=1;
for(int i=1;i<10;i++){System.out.print(i); if (i%3==0)System.out.println(); }
draw(board);
while(!boardFull(board) && !isWon(board))
{

board=userGo(board,xoro);
if (xoro==1) xoro=2; else xoro=1;
draw(board);

}
if (isWon(board)) System.out.println(xoro==1?"x":"o" + " has won");
else System.out.println("draw");

}

81

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/deal2.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/deal2.class

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

A.14 Mastermind [1,11] (mastermind.class)

Implement the well-known game with coloured pegs. You can use digits instead of colours. The
computer’s pattern of n digits is hard-wired into the program. The user tries to guess the pattern.
The computer responds, telling the user two values:

1. how many digits are right and in the right place (the black pegs)

2. how many digits are right but in the wrong place (the white pegs)

Carry on until the user gets it. Tell the user how many guesses it took.

A.15 Noughts and Crosses (2) [1,11] (tictac2.class)

This time, the computer plays against the user. The user should be allowed to go first and the
computer must respond each time with a random legal move.

A.15.1 Hint

The way I have done this is very crude. For the computer’s move I repeatedly generate a random
number between 1 and 9 until I get a free square. That’s the move the computer makes.

A.16 Noughts and Crosses (3) [1,11] (tictac3.class)

This time the computer plays against the user. The user should be allowed to go first and the
computer must respond each time with a random legal move. But this time if the computer spots
an immediate win it goes for it!

A.16.1 Hint

To help me with this I have written the following ugly method:

static boolean winning(int []b, int xoro)
{

return (b[0]==xoro && b[0]==b[1] && b[1]==b[2]) ||
(b[3]==xoro && b[3]==b[4] && b[4]==b[5]) ||
(b[6]==xoro && b[6]==b[7] && b[7]==b[8]) ||
(b[0]==xoro && b[0]==b[3] && b[3]==b[6]) ||
(b[1]==xoro && b[1]==b[4] && b[4]==b[7]) ||
(b[2]==xoro && b[2]==b[5] && b[5]==b[8]) ||
(b[0]==xoro && b[0]==b[4] && b[4]==b[8]) ||
(b[2]==xoro && b[2]==b[4] && b[4]==b[6]);

}

82

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/mastermind.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/tictac2.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/tictac3.class

Spell-Checker [2,7]

A.17 Nim [1,11] (nim.class)

The computer plays against the user. Implement a winning strategy. In nim we have n piles of
matches. The user and the computer take it in turns picking up matches. The rules are that on
each go you can pick up as many matches as you like from exactly one pile. The person who is
left with no matches is the loser.

A.17.1 Hint

This is quite a hard problem. If you can do this then you must be a super geek! The way I did it
relies on two observations:

1. Suppose we have some non-negative integers which when XORed together gives a non-zero
value (condition 1). There is a way of subtracting a positive amount from one of the numbers
to leave a set of non-negative numbers which when XORed together will give zero.

2. Suppose we start with some non-negative integers which when XORed together gives zero
(condition 2). If we subtract a non-negative amount from any one of these numbers to leave
a set of non-negative integers, this set of numbers when XORed together will always give a
non-zero value.

If we start by offering the user some piles satisfying condition 2 then we can always win because
the number of matches is being reduced at each go and when all the piles are zero, they satisfy
condition 2.

So, the only problem is to work out how to convert the piles from condition 1 to condition 2. This
is one way of doing it:

1. First I XOR all the piles together to produce xorall.

2. You then look for a with pile n matches such that when XORed with xorall, the result is less
than n. Try all piles until you find one satisfying this. That’s the computers turn.

A.18 Clock [1,12]

Simplify the following program for animating two clock hands
[LectureElements/bigClock.java] LectureElements/bigClock.java using methods you have
defined yourself .

A.19 Spell-Checker [2,7]

1. Find out about the Soundtex algorithm.

2. Write a method that implements it.

3. Write a spell-checker that goes through a file and every time it finds a word not in the
dictionary it offers the user a list of similar words using Soundtex to choose from. It prompts
the user either to accept the word or to enter a replacement. New words entered by the user
should be stored in a local dictionary.

83

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/nim.class
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureElements/bigClock.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

A.20 Diary Program [2,9]

A diary consists of a number of events. Each event has three associated bits of information.

1. The date when the event takes place.

2. The number of days before they wish to be reminded of the event.

3. The text of the event.

You must write a system that gives the user the following choices:

1. Add an event.

2. See all today’s events (you must find today’s date). Each event must be displayed one at a
time, each time asking the user if they want to:

(a) Delete the event.

(b) Change the date of the event.

(c) Change the number of days before they wish to be reminded of the event.

(d) Continue.

3. See all today’s reminders. Each event must be displayed one at a time, each time asking the
user if they want to:

(a) Delete the event.

(b) Change the date of the event.

(c) Change the number of days before they wish to be reminded of the event.

(d) Continue.

4. See all events on a particular day. Each event must be displayed one at a time, each time
asking the user if they want to:

(a) Delete the event.

(b) Change the date of the event.

(c) Change the number of days before they wish to be reminded of the event.

(d) Continue.

5. See all events on a particular time interval (forget leap years). Each event must be displayed
one at a time, each time asking the user if they want to:

(a) Delete the event.

(b) Change the date of the Event.

(c) Change the number of days before they wish to be reminded of the Event.

(d) Continue.

6. See all Events, each time asking the user if they want to:

(a) Delete the Event.

(b) Change the date of the Event.

(c) Change the number of days before they wish to be reminded of the Event.

(d) Continue.

7. Update the diary file.

8. Exit the system.

84

Diary Program [2,9]

You must design a Diary class and an Entry class. Your Diary class should contain a Vector of
Objects of type Entry. Your diary should be stored in a file. This file should be read into memory
when you start the system and it should be updated when you leave the system. All changes
should be done in memory.

Consider the program [LectureSimpleObjects/diary.java] Add the extra options to the diary
user interface.

A.20.1 Hints

You need three classes:

A Date class with three fields:

• int day

• int month

• int year

An Event class with 3 fields:

• String text

• Date date

• int reminder

A Diary class with 2 fields:

• Person owner

• Vector events

A.20.2 Methods needed for Date Class

public boolean Equals(Date d) returns true if and only if this date is same as d.date like
this:

public boolean Equals(Date d)
{
return (d.day==day && d.month==month && d.year==year);
}

public boolean Before(Date d) returns true if and only if this date is before d.

public boolean After(Date d) returns true if and only if this date is after d.

public boolean withinRange(int n,Date d) returns true if and only if this date is less
than n days before d.

public static Date read() prompts user for date and returns whatever user enters.

public String toString() converts Date to String.

85

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/diary.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

A.20.3 Methods needed for Event Class

public boolean Equals(Date d) returns true if and only if the date of this Event is same
as d.date like this:

public boolean Equals(Date d)
{
return (date.equals(d));
}

public boolean Before(Date d) returns true if and only if this event’s date is before d.

public boolean After(Date d) returns true if and only if this event’s date is after d.

public boolean Before(Date d) returns true if and only if this event’s date is before d.

public boolean withinRange(int n,Date d) returns true if and only if this event’s date
is less than n days before Date d.

public static Event read() prompts user for Event and returns whatever user enters.

public String toString() converts Event to String.

A.20.4 Methods needed for Diary Class

public Diary addEvent(Event e)
like this:

public Diary addEvent(Event e)
{
events.addElement(e);
return new Diary(events,owner);
}

86

Appendix B

Exams

Important: the information and advice given in the following sections are based on the
examination structure used at the time this guide was written. However, the University can alter
the format, style and requirements of an examination paper without notice. Because of this, we
strongly advise that you check the instructions on the paper you actually sit.

B.1 Exam Guidelines

B.1.1 Useful Information

Make sure that you have understood the rubric. Take your time deciding which questions to
attempt. The exam lasts for three hours, so you have forty-five minutes per question. Notice that
each question is broken into three sections, worth 9, 8 and 8 marks respectively. These are in
increasing order of difficulty. The first two sections of each question are usually either book work
or an exercise very similar to those in the subject guides. This should be an extra incentive for
you to attempt all the exercises in the subject guides.

The third section of each question usually allows you to demonstrate your programming skill.

Do NOT answer more than four questions.

B.1.2 Java 1.5 Changes

The exam paper below was written before the introduction of Java 1.5. Future exams will have
the same format as the one below. We now, however, use Java 1.5. The main difference is that
the class java.util.Scanner is now usually used, as in these guides, instead of the older
java.io.BufferedReader.

B.1.3 Time Allowed

This exam lasts three hours.

87

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

B.2 The Exam

There are six questions in this paper. You should answer no more than FOUR questions. Full
marks will be awarded for complete answers to a total of FOUR questions. Each question carries
25 marks. The marks for each part of a question are indicated at the end of the part in [.]
brackets.

There are 100 marks available on this paper.

No calculators should be used.

QUESTION 1

1. (a) Write three assignment statements whose effect is to swap the contents of variables x
and y.

(b) Briefly explain why the following program has a compilation error:
class f
{

int x=false;
}

(c) What is the output of the following Java program?
class f
{

public static void main(String [] args)
{
System.out.println(7+2*3);

}
}

Justify your answer.

[9 Marks]

2. (a) What is the output of the following?
class H
{

public static void main(String [] args)
{

i=0;
while (i<5) {System.out.println(i);i=i+1;}

}
}

(b) Rewrite program H above using a for loop.

[8 Marks]

3. Write a method which sorts an array of ints into ascending order and discuss the time
complexity of your method.

[8 Marks]

88

The Exam

QUESTION 2

1. (a) Given that the ASCII code for the character b is 98, what is the ASCII code for the
character a?

(b) What is the output of the following Java program?
class ascii
{

public static void main(String[] args)
{

System.out.print((int) ’a’);
}

}

(c) What is the output of the following Java program?
class ascii
{

public static void main(String[] args)
{

System.out.print((char) 98);
}

}

(d) What does the following program do?
import java.io.*;
class one
{

public static void main(String args[]) throws Exception
{

FileReader f = new FileReader("aaa");
int x; x=f.read(); x=f.read();
System.out.print((char)x);

}
}

[9 Marks]

2. Write two fragments of code that illustrate how to output the contents of a file

(a) by reading it character by character.

(b) by reading it line by line.

[8 Marks]

3. Write a method which prints out the number of occurrences of each letter in a file called
“aaa”. You should distinguish between upper and lower case letters.

[8 Marks]

89

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

QUESTION 3

1. Define a class called Date which has three fields day, month and year all of type int and one
constructor with three int parameters.

[9 Marks]

2. Write two instance methods, isEqual and isBefore for the class Date. Both methods should
have one parameter d of type Date. The method isEqual should return true if this date is
equal to d and false otherwise. The method isBefore should return true if this date is before d
and false otherwise.

[8 Marks]

3. Define a class called Person consisting of a name which is of type String and a date of birth
which is of type Date. Write a constructor with two parameters (one of type String and the
other of type Date) for Person and an instance method isYounger, with one parameter p of
type Person, for checking whether this person is younger than p. (You should use the isBefore
method of the last question.)

[8 Marks]

90

The Exam

QUESTION 4

1. (a) Give a boolean expression which evaluates to true if the variable x has the value 3 and
which evaluates to false otherwise.

(b) Give a boolean expression which evaluates to true if the variable x has the value 7 or the
value 9 and which evaluates to false otherwise.

(c) Give a boolean expression which evaluates to true if the variable x has the value 1 and
the variable y has the value 2 and the variable z is even and which evaluates to false
otherwise.

(d) Give a boolean expression which evaluates to true if the variables x, y and z all have the
same value and which evaluates to false otherwise.

[9 Marks]

2. (a) Here is the body of a method:
{

return 3;
}

What is its return type?

(b) Here is the body of a method:
{

int x;
if (x==k) return "hello"+" world";
else return "";

}

What is its return type?

(c) Here is the body of a method:
{

System.out.println(3);
}

What is its return type?

(d) Here is the body of a method:
{

return("hello".charAt(2));
}

What is its return type?

[8 Marks]

3. Write a method whose heading is static Vector convert(Object [] a) which given an
array of Objects, returns a Vector of the same Objects in the same order.

[8 Marks]

91

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

QUESTION 5

1. (a) Explain briefly the purpose of packages in Java.

(b) Explain briefly the purpose of the import statement in Java.

(c) Rewrite the following Java class so it does not have any import statements.
import java.io.*;
class Echo
{

public static void main(String[] args) throws IOException
{
BufferedReader in =
BufferedReader(new InputStreamReader(System.in));
String s =in.readLine();
System.out.println(s);

}
}

[9 Marks]

2. Given the class C defined as follows

class C
{

int f()
{

return 5;
}

}

Define a class D which extends C and which has one method which overrides f and another
which overloads f .

[8 Marks]

3. (a) The class Object has one constructor with no parameters. How would you declare a
variable, v, of type Object and then assign a value to variable, v, by using the constructor
of the class Object?

(b) Define a class called Array with one field of type array of Object and one instance method
toString() which returns a String containing the elements of the array separated by
commas. Do not define a constructor for the class Array.

[8 Marks]

92

The Exam

QUESTION 6

1. (a) What is the output of the following program?

public class A
{

public static void main(String[] args)
{
try
{

Integer.parseInt("rabbit");
System.out.println("cat");

}
catch(Exception e)
{

System.out.println("fish");
}

}
}

(b) There will be an error when we compile the program below. What is it? Give two
different ways of correcting it.

import java.io.*;
public class cat1
{

public static void main(String[] args)
{

FileReader f =new FileReader("words");
}

}

[9 Marks]

2. (a) What is the output of the following program?

public class A
{

int f(int n)
{
if (n==0) return 1;
else return n*f(n-1);

}

public static void main(String[] args)
{
System.out.println(f(3));

}
}

(b) Write a recursive method static int fibonacci(int n) which returns the nth
fibonacci number.

[8 Marks]

93

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

3. Using exceptions, write a method static boolean find(String f) which returns true if
the file whose name is f is found and false if it is not found.

[8 Marks]

94

Appendix C

Previous Exam Questions (With Answers)

QUESTION 1

1. (a) What is the purpose of the main method in a Java application?

(b) When we compile the program below for the first time, what is the name of the new file
that will appear in the current directory?

[4 Marks]

2. (a) Briefly describe what methods are and why they are useful in programming.

(b) What is a recursive method? Give an example of a recursive method.
[6 Marks]

95

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture1/HelloWorld.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

QUESTION 2

1. Briefly explain the purpose of comments in a Java program and briefly describe two different
ways of writing comments.

[4 Marks]

2. (a) Describe the syntax of a for loop in Java.

(b) Give an example of a for loop that never terminates.

[6 Marks]

96

APPENDIX C. PREVIOUS EXAM QUESTIONS (WITH ANSWERS)

QUESTION 3

1. Briefly explain the purpose of Exceptions in a Java program.

[4 Marks]

2. (a) List three primitive types in Java

(b) Give an example of a variable declaration and explain what it does.

(c) Give an example of an assignment statement and explain what it does.

[6 Marks]

97

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

QUESTION 4

1. (a) What are the possible values that boolean expression evaluate to.

(b) List two boolean operators in Java and, with examples, briefly explain their meaning.

[4 Marks]

2. (a) Describe the similarities and differences between arrays and Vectors in Java.

(b) How do you refer to the third element of array x? (Reminder: The third element of an
array has exactly two elements before it)

(c) How do you refer to the third element of Vector v? (Reminder: The third element of a
Vector has exactly two elements before it)

[6 Marks]

98

APPENDIX C. PREVIOUS EXAM QUESTIONS (WITH ANSWERS)

QUESTION 5

1. Give an example of a compilation error and explain how the compiler informs us of the error.

[4 Marks]

2. (a) Write a complete Java program that tests whether times binds more tightly than plus.
Explain how the output of your program will enable you to decide.

(b) Explain why it is not necessary to remember the precedence of operators when writing
programs.

[6 Marks]

99

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

QUESTION 6

1. (a) What does it mean to say that Java is case sensitive?

(b) Give an example of a Java program with an error caused by the fact that Java is case
sensitive.

[4 Marks]

2. (a) Consider the two programs below. Explain what each of their outputs is and why.

(b) Explain the output of the following program:

[6 Marks]

100

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture1/div1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/Lecture1/div2.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureUsefulMethods/abs.java

APPENDIX C. PREVIOUS EXAM QUESTIONS (WITH ANSWERS)

QUESTION 7

1. Write a program that prints out every other character of a file. i.e The first, third, fifth etc.
character. The name of the file should be passed to the program as a command line
argument.

[7 Marks]

101

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

QUESTION 8

Consider the class Person Extend the class Person, to a class NatPerson so that a person also
has a nationality which is a String. We require two new constructors corresponding to each of
the two constructors of Person.

[7 Marks]

102

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureSimpleObjects/Person.java

APPENDIX C. PREVIOUS EXAM QUESTIONS (WITH ANSWERS)

QUESTION 9

1. What is the output of the program below and why?

2. What is the output of the program below and why?

[7 Marks]

103

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureRefVars/test1.java
http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureScope/p1.java

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

QUESTION 10

1. Given the class Arrays: The methods in class Arrays can be referred to in other classes.
Write a complete Java application which calls some of the methods in the class Arrays which
asks the user how many numbers they are going to enter, reads in the numbers and prints
their average.

[7 Marks]

104

http://sebastian.doc.gold.ac.uk/externalcis109/stuff/LectureNonVoidMethods/Arrays.java

APPENDIX C. PREVIOUS EXAM QUESTIONS (WITH ANSWERS)

QUESTION 11

1. Describe the Bubble Sort Algorithm.

[2 Marks]

2. Write a method whose heading is

public static void ascendingBubbleSort(int[] a, int size)

which sorts an array of ints into ascending order.

[5 Marks]

105

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

QUESTION 12

Using try and catch and the method Integer.parseInt, write a static method, isInt that takes
a String as a parameter and returns true if the String contains only digits and false
otherwise.

[7 Marks]

QUESTION 13

Write a simple spell checker. You can assume the existence of a file called words in the current
directory consisting of a big list of English words (courtesy of Unix), one per line. The user simply
types the beginning of the word he wants to check as a command line argument. For example,

java spell freq

will print out all English words starting with freq

frequencies
frequency
frequent
frequented
frequenter
frequenters
frequenting
frequently
frequents

You may also use the String method startsWith.

[8 Marks]

106

APPENDIX C. PREVIOUS EXAM QUESTIONS (WITH ANSWERS)

QUESTION 14

Write a complete program that asks the user to enter two numbers and then prints out the
Greatest Common Divisor of the two numbers. Your solution may be iterative or recursive.

[8 Marks]

107

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

QUESTION 15

1. Define a class house that consists of three fields:

(a) an int which gives its number

(b) another int which gives the number of rooms in the house

(c) an array of Persons living in the house.

Your definition should include a constructor with three parameters.

2. Define another class called Street consisting of two fields

(a) A String representing the name of the street.

(b) An array of Houses in the street.

Your definition of Street should contain a constructor with two parameters and an instance
method called UpMarket which returns true if every house in the street contains more rooms
than people.

[8 Marks]

108

APPENDIX C. PREVIOUS EXAM QUESTIONS (WITH ANSWERS)

QUESTION 16

A palindrome is a String that reads the same backwards as forwards. Write a complete Java
program that asks the user to enter a String. The program outputs ‘Yes’ if the String entered by
the user is a palindrome and ‘no’ otherwise. The program repeatedly asks the user if he wants
another go to enter further Strings.

[8 Marks]

QUESTION 17

Consider the following program:

import java.io.*;
public class dog
{

public static void cat(String s) throws Exception
{

BufferedReader inone =new BufferedReader(new FileReader(s));
int t=inone.read();
while (t!=-1)
{ System.out.print((char)t);

t=inone.read();
}

}
public static void main(String[] args) throws Exception
{cat(args[0]);}

}

1. What happens if we type in java dog dog.java?

[2 Marks]

2. When does the variable t get the value -1?

[2 Marks]

3. What would happen if the input file was empty? Why?

[2 Marks]

4. What is the value of the expression, "hello".charAt(0) ?

[2 Marks]

5. Let s be a String. Write an expression which yields the last character in s.

[4 Marks]

6. Write a complete Java program called swapab that writes the contents of a file to standard
output swapping all ‘a’s for ‘b’s and all ‘b’s for ‘a’s. For example to run the program on a file
called fred, we type: java swapab fred.

[13 Marks]

109

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

QUESTION 18

1. Briefly describe the class Vector and how it compares with an array.

[4 Marks]

2. Assuming v is an object of class Vector, what is wrong with the boolean expression
v.elementAt(0)==1?

[2 Marks]

3. Briefly explain the need for the Java classes such as Integer, Character, and Boolean.

[3 Marks]

4. Assuming that the zeroth and first elements of the Vector v are Integers, write a statement
whose effect is to add a new element to v. The value of this new element is the sum of the
first two elements of v. Fully explain your answer.

[8 Marks]

5. Write a method whose heading is
static double average(Vector v)
which returns the average of all elements in a non-empty Vector of Integers.

[8 Marks]

110

APPENDIX C. PREVIOUS EXAM QUESTIONS (WITH ANSWERS)

QUESTION 19

1. What is a recursive method?

[2 Marks]

2. Write a method int power(int n, int m), which implements exponentiation (n to the
power m) recursively in terms of multiplication (Assume m ≥ 0).

[5 Marks]

3. Write a method int power(int n, int m), which implements exponentiation iteratively.

[5 Marks]

111

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

112

Appendix D

Multiple Choice Questions

113

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

Consider the following program and then answer the questions that occur on the next pages.

class HorizLine
{

int length;

public HorizLine(int l)
{length=l;}

public void Draw()
{for (int i=0;i<length;i++)System.out.print("*");
}

public void Drawln()
{Draw();
System.out.println("");

}
}

class BetterLine extends HorizLine
{
char endchar;
char middlechar;

public BetterLine(char end,char middle, int len)
{
super(len);
endchar=end;
middlechar=middle;
}

public void Draw()
{for (int i=0;i<length;i++)
if (i==0 || i == length-1) System.out.print(endchar);
else System.out.print(middlechar);
}

}

114

APPENDIX D. MULTIPLE CHOICE QUESTIONS

QUESTION 20

Consider the program on page 114. How many instance variables does the class BetterLine
have? (including the instance variables it inherits)

(a) 0

(b) 1

(c) 2

(d) 3

(e) 4

QUESTION 21

Consider the program on page 114.

How would an instance of HorizLine be declared?

(a) b HorizLine;

(b) HorizLine b;

(c) HorizLine(b);

(d) HorizLine();

(e) None of the above.

QUESTION 22

Consider the program on page 114.

How would an instance of HorizLine be created?

(a) b=new HorizLine;

(b) new HorizLine(b);

(c) b=new HorizLine(5)

(d) b=HorizLine(i);

(e) None of the above.

115

file:no.html
file:no.html
file:no.html
file:yes.html
file:no.html
file:no.html
file:yes.html
file:no.html
file:no.html
file:no.html
file:no.html
file:no.html
file:yes.html
file:no.html
file:no.html

CIS109 Introduction to Java and Object Oriented Programming (Volume 2)

QUESTION 23

Consider the program on page 114.

How many of the statements below are true?

HorizLine is a constructor

Draw is a constructor

Drawln is a constructor

BetterLine is a constructor

(a) 0

(b) 1

(c) 2

(d) 3

(e) 4

QUESTION 24

Consider the program on page 114.

Which one of the statements below is true?

(a) The method Draw in class BetterLine is an example of method overriding

(b) The method Draw in class BetterLine is an example of method overloading

(c) The method Draw in class BetterLine is an example of method overcasting

(d) The method Draw in class BetterLine has two parameters

(e) None of the above.

116

file:no.html
file:no.html
file:yes.html
file:no.html
file:no.html
file:yes.html
file:no.html
file:no.html
file:no.html
file:no.html

Appendix E

Reading List

Reading List

[Bis01] Judith Bishop. Java Gently - Third Edition. Addison-Wesley, 2001.

[CK06] Quentin Charatan and Aaron Kans. Java - In Two Semesters - Second Edition.
McGraw-Hill, East London Business School, 2006.

[Dan07] Sebastian Danicic. CIS109 Subject Guide Volume 1. University of London, Goldsmiths
College, 2007.

[DD07] Harvey Deitel and Paul Deitel. Java - How to Program - 7/e. Prentice Hall
International, 2007.

[Dow03] Allen B. Downey. How to Think Like a Computer Scientist - Java Version. Green Tea
Press, 2003. A free book – see http://greenteapress.com/thinkapjava/.

[Fla05] David Flanagan. Java in a Nutshell, Fifth Edition. O’Reilly, 2005.

[Hub04] John R. Hubbard. Schaums:Outlines - Programming with Java. McGraw-Hill, University
of Richmond, 2004.

[Inc] Sun Microsystems Inc. http://java.sun.com/javase/reference/api.jsp. This is where
you can look up information about Java classes and methods.

[Kan97] Jonni Kanerva. The Java FAQ. Addison-Wesley, 1997.

[LO02] Kenneth A. Lambert and Martin Osborne. Java - A Framework for Programming and
Problem Solving. Brookes-Cole, 2002.

[NK05] Patrick Niemeyer and Jonathan Knudsen. Learning Java - Third Edition. O’Reilly, 2005.

[Smi99] Michael Smith. Java - An Object Oriented Language. McGraw-Hill, 1999.

[Wu06] C. Thomas Wu. An Introduction to Object-Oriented Programming with Java, 4/e.
McGraw-Hill, Naval Postgraduate School, 2006.

117

	Introduction
	What We Cover in this Subject Guide
	Suggested Schedule for Volume 2

	Books

	Command-Line Arguments
	Learning Objectives
	Reading
	Introduction
	The Number of Command Line Arguments
	Exercises on Chapter 2
	Add One
	Add
	Backwards
	Add All
	Add All Real
	Exercises (no solutions)

	Summary

	Recursion
	Learning Objectives
	Reading
	Definition of a Recursive Method
	Examples of Recursive Methods
	Factorial
	Greatest Common Divisor

	Exercises on Chapter 3
	Fibonacci Numbers
	Multiplication
	Exponentiation
	Reversing Input
	The Syracuse Sequence

	Summary

	Packaging Programs
	Learning Objectives
	Reading
	Introduction
	Public Classes
	File Names and Public Classes
	Running Programs that are Part of Packages

	The import Statement
	Laborious but Worthwhile Packaging Task
	Exercises on Chapter 4
	Add Comments
	No Import
	A Complete Application
	Add your Own Method

	Summary

	More About Variables
	Learning Objectives
	Reading
	Introduction
	Local Variables

	What's Really in a Variable?
	Exercises
	Parameters Passed by Value
	Exercises on Chapter 5
	Arrays (1)
	Arrays (2)
	Strings
	Test Array
	Test Int

	Summary

	Bits, Types, Characters and Type Casting
	Learning Outcomes
	Reading
	Introduction
	Exercise: Maximum Array Size

	Different Types Have Different Sizes
	Characters
	Exercise
	Exercise: Find All Characters

	Type Casting
	Quick Question

	The Method read()
	End of File
	A Reason why read() Returns an int

	More Type Casting
	Question

	Exercises on Chapter 6
	Research
	Int to Boolean
	Boolean to Int
	Float to Int
	Int to Float
	Double to Float
	Float to Char
	Int to Short
	Next Biggest
	What is the Output?
	Largest Int

	Summary

	Files and Streams
	Learning Objectives
	Reading
	Introduction
	Reading Files
	End Of File

	Reading Files a Character at a Time
	Question
	The Newline Character

	Writing to Files
	Closing the File
	Swap all as and bs
	Example: Counting the Number of Lines in a File
	Example: Counting the Number of Words in a File

	Example: A Simple Spell Checker
	A Slightly Better Spell Checker
	Example: A Program to Find Anagrams
	Exercises on Chapter 7
	Third Line
	Hundredth Line
	Odd Lines
	Even Lines
	Cat Choose
	Cat Command Line
	Third Char
	Hundredth Char
	Odd Characters
	Even Characters
	Swapchars
	Manycat
	Swapcase
	ASCII
	Remnewline
	Tenperline
	List Words
	Assignment -- Spell Checker
	Hard Assignment -- A Better Spell Checker

	Summary

	Sorting Arrays and Searching
	Learning Objectives
	Reading
	Introduction
	Ways of Sorting
	Sorting as you Create
	Exercise

	Sorting an Array
	Swapping

	Searching
	Linear Searching
	Binary Searching
	Exercises on Binary Searching

	Efficiency of Different Algorithms: Complexity Analysis
	Linear Searching
	Binary Searching

	Exercises on Chapter 8
	A Class for Searching and Sorting Arrays
	Test the Class
	Sorting Arrays of Strings
	Test your Class
	Exercises (No Solutions)

	Example Assignment
	Summary

	Defining Classes
	Learning Objectives
	Reading
	Introduction
	An Example of Defining your own Class
	WARNING!
	A Date Class

	Using a Class that you have Defined
	Using the Date Class
	Dot Notation

	Using Classes in other Classes
	A Person Class
	A House Class
	A Street Class

	An Aside: Expressions for Arrays
	Define your House in a Single Expression
	A More Complex Example with Instance Methods
	The Package Statement
	Instance Variables
	A Constructor
	Creating Objects with new
	Instance Methods
	Leaving out toString()

	Exercises on Chapter 9
	Exercise on IntAndDouble
	Expressions For Objects
	toString() Methods
	Exercises (no solutions)

	Summary

	Inheritance
	Learning Outcomes
	Reading
	Introduction
	The extends keyword
	The super Keyword
	More about Instance Methods
	Shapes Revisited
	Extending HorizLine (Method Overriding)
	Rectangles of Stars
	Better Rectangles
	Hollow Rectangles

	Exercises on Chapter 10
	Test HollowRectangle
	Extend Rectangle to Square
	Extend BetterRectangle to BetterSquare
	Left Bottom Triangles

	Exercises (no solutions)
	Left Top Triangles
	Right Triangles

	Summary

	Exception Handling
	Learning Objectives
	Reading
	Introduction
	`File Not Found' Exceptions
	Throwing Exceptions
	Exercises on Chapter 11
	`File Not Found' Exceptions

	Summary

	Vectors
	Learning Objectives
	Reading
	Introduction
	Autoboxing, Unboxing and Generics
	Untyped Vectors
	Exercise

	Sorting Vectors
	Exercises on Chapter 12
	Exercises (no solutions)

	Manipulating Files Using Vectors
	Character by Character
	Line by Line
	Exercises
	Longest Line in a File
	Occurrences of Printable Characters in a File
	Longest Word in the English Language
	Occurrences, Most Popular First
	Do the Same Without a Vector
	Frequency
	Finding Words in Dictionary
	Exercise (no solution)

	A System for Processing Student Marks
	The Class Student
	Printing Objects
	The Raw Data File marks

	Exercises
	Students in Vector
	Print Students in Vector
	Print Sorted Students in Vector

	Exercises (no Solutions)
	Finding Students whose Name Starts with a Particular Prefix
	Sorting as you Input

	Summary

	Conclusion
	Topics
	Complete All the Challenging Problems!

	II Appendices
	Challenging Problems
	Try out a Program [1,2]
	Rolling a Die [1,5] (dice.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/dice.class)
	Hint

	Leap Years [1,7]
	Hint

	Drawing a Square [1,7]
	Hint

	How Old Are You? [1,7] (age.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/age.class)
	Hint

	Guessing Game [1,8]
	Hint

	Mouse Motion [1,8] (mouseInRect.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/mouseInRect.class)
	Hint

	Maze [1,8] (maze.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/maze.class)
	Hint

	Hangman [1,9] (hangman.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/hangman.class)
	Hint

	Roman Numerals [1,9] (Roman.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/Roman.class)
	Hint

	Shuffling a Pack of Cards (1) [1,10] (deal1.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/deal1.class)
	Hint

	Shuffling a Pack of Cards (2) [1,10] (deal2.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/deal2.class)
	Hint

	Noughts and Crosses (1) [1,11] (tictac.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/deal2.class)
	Hint

	Mastermind [1,11] (mastermind.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/mastermind.class)
	Noughts and Crosses (2) [1,11] (tictac2.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/tictac2.class)
	Hint

	Noughts and Crosses (3) [1,11] (tictac3.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/tictac3.class)
	Hint

	Nim [1,11] (nim.classhttp://sebastian.doc.gold.ac.uk/externalcis109/stuff/classes/nim.class)
	Hint

	Clock [1,12]
	Spell-Checker [2,7]
	Diary Program [2,9]
	Hints
	Methods needed for Date Class
	Methods needed for Event Class
	Methods needed for Diary Class

	Exams
	Exam Guidelines
	Useful Information
	Java 1.5 Changes
	Time Allowed

	The Exam

	Previous Exam Questions (With Answers)
	Multiple Choice Questions
	Reading List

