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1 Introducing functional programming

1.1 Functions in conventional languages:

In a language like Java, a method is a piece of ‘packaged’ program for performing standard
operations like finding square roots. To obtain the square root of a positive number stored in
a variable x, we write:

Math.sqrt ( x )

at the point in the program where we want the value, such as:

System.out.println ( 1.0 + Math.sqrt ( x ) ) ;

this is called an application of the method. The value represented by x is called the argument
or actual parameter. In this context, the canned program computes the square root of x, 1.0
is added to it and the result is then printed.

We can also define our own methods specifying how the result is computed using ordinary
Java statements. Here’s a function that returns the greater of its two argument values:

static int max (int x, int y )
{
if (x > y)

return x;
else return y;
}

The identifiers x and y are called formal parameters. They’re used inside the definition to
name the two values that will be supplied as arguments when the function is applied. We can
use max anywhere we need a value, just like sqrt. Here’s how we might use max to filter out
negative values on output:

System.out.println ( max ( z, 0 ) ) ;

A more interesting case is when the actual parameter is a function application itself or involves
one. We can use max to find the largest of three numbers by writing:

max ( a, max ( b, c ) )
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Combining functions together like this is called composition. The expression is evaluated
‘inside-out’ because the outer application of max can’t be evaluated until the value of its
second argument is known. The inner application of max is therefore evaluated first using the
values of b and c and the result is used as the actual parameter of the outer application.

Another way of combining functions together is to define more powerful ones using simpler
ones as ‘building blocks’. If we often need to find the largest of three numbers we might define:

static int MaxOf3 (int x, int y, int z)
{
return max ( x, max ( y, z ) );

}

and apply it by writing:

MaxOf3 ( a, b, c )

1.2 Programming with functions

Java is called an imperative language because programs written in it are recipes for ‘doing
something’. If our programs consist only of functions, we can concentrate on what the results
are and ignore how they’re computed. Forget that sqrt is a piece of code and think of sqrt
( x ) as a way of writing a value in your program, and you’ll get the idea. You can think
of MaxOf3 like this as well if you ignore the way it works inside. By defining a ‘toolkit’ of
useful functions and combining them together like this, we can build powerful programs that
are quite short and easy to understand.

Programming in Hope has the flavour of simply ‘writing down the answer’ by writing
an expression that defines it. This will contain one or more function applications to define
smaller parts of the answer. These functions won’t usually be built in like sqrt, so we’ll have
to define them ourselves, but we’ll still think of them as definitions of data objects, and not
as algorithms for computing them.

1.3 A simple Hope example – conditionals

Let’s see how we can define max in Hope. Like Java, it’s a strongly-typed language, which
means we must tell the compiler about the types of all objects in our programs so it can check
that they’re used consistently. The function definition comes in two parts. First we declare
the argument and result types:

max : num X num -> num ;

is a reserved word: you can’t use it as a name. max is the name of the function being defined.
Names consist of upper and lower case letters (which are distinct) and digits, and must start
with a letter. The current fashion is to use lower case. The layout isn’t significant and you
can separate symbols with any number of blanks, tabs and newlines for clarity, as in this
example. Symbols need only be separated when they might otherwise be confused as one,
such as and max.

The next part of the declaration gives the types of the arguments (read the symbol : as
‘takes a’). Non-negative integers are of the predefined type num (in lower case). # is read as
‘and a’; (or you can use the reserved word X). -> is read as ‘yields’. The semicolon marks
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the end of the declaration, which tells the compiler that max takes two numbers as arguments
and returns a single number as its result.

The result of a function is defined by one or more recursion equations. max needs only
one equation to define it:

max ( x, y ) <= if x > y then x else y ;

Read the symbol as ‘the value of’. The expression max ( x, y ) is called the left-hand side
of the equation. It defines x and y as formal parameters, or local names for the values that
will be supplied when the function is applied. Parameter names are local to the equation, so
x and y won’t be confused with any other x or y in the program. The symbol <= is read as
‘is defined as’.

The rest of the equation (called the right-hand side) defines the result. It’s a conditional
expression. The symbols if, then and else are reserved words. Java’s conditional statement
chooses between alternative actions, but Hope’s conditional expression chooses between al-
ternative values, in line with our view that function applications are ways of writing values
rather than recipes for computing them. If the value of the expression x > y is true, the
value of the whole conditional expression is the value of x, otherwise it’s the value of y. The
alternative values can be defined by any Hope expressions.

When the value of a function is defined by more than one expression like this, they are
evaluated in an unspecified order. On a suitable computer, such as the Imperial College
ALICE machine, it’s even possible to evaluate both expressions and the test in parallel and
throw away one of the values according to the result of the test.

1.4 Using functions that we’ve defined

A Hope program is just a a single expression containing one or more function applications
composed together. It’s evaluated immediately and the result and its type are printed on the
screen. Here’s a simple program that uses max, with its output on the line below:

max ( 10, 20 ) + max ( 1, max ( 2,3 ) ) ;
23 : num

The rules for evaluating the expression are the same as those of Java: function arguments are
evaluated first, the functions are applied, and finally other operations are performed in the
usual order of priority.

We can also use existing functions to define new ones. Here’s the Hope version of MaxOf3:

MaxOf3 : num X num X num -> num ;
MaxOf3 ( x, y, z ) <= max ( x, max ( y, z ) ) ;

1.5 A more interesting example – repetition

Just as Java’s conditional statement is replaced by Hope’s conditional value, so the repetitive
statement is replaced by the repetitive value. Here’s a Java function that multiplies two
numbers using repeated addition:

static int mult ( int x, int y )
{

int prod=0;
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while (y > 0)
{
prod = prod + x ;
y = y - 1;

}
mult = prod

}

It’s hard to be sure this function does enough additions (it took me three tries to get it right)
and this seems to be a general problem with loops in programs. A common way of checking
imperative programs is to simulate their execution. If we do this for input values of 2 and 3,
we’ll find that prod starts with the value 0 and gets values of 2, 4 and 6 on successive loop
iterations, which suggests the definition is correct.

Hope doesn’t have any loops, so we must write all the additions that the Java program
performed in a single expression. It’s much easier to see that this has the right number of
additions:

mult : num X num -> num ;

mult ( x, y ) <= 0 + x + x + ...

or would be if we knew how many times to write + x. The hand simulation suggests we need
to write it y times, which is tricky when we don’t know the value of y. What we do know is
that for a given value of y, the expressions:

mult ( x, y )

and

mult ( x, y-1 ) + x

will have the same number of + x terms if written out in full. The second one always has two
terms, whatever the value of y, so we’ll use it as the definition of mult:

mult ( x, y ) <= mult ( x, y-1 ) + x ;

On the face of it we’ve written something ridiculous, because it means we must apply mult
to find the value of mult. Remember however that this is really shorthand for 0 followed by
y occurrences of + x. When y is zero, the result of mult is also zero because there are no +
x terms. In this case mult isn’t defined in terms of itself, so if we add a special test for it, the
definition terminates. A usable definition of mult is:

mult ( x, y ) <= if y = 0 then 0 else mult ( x, y-1 ) + x ;

Functions that are defined using themselves like this are called recursive. Every Java program
using a loop can be expressed as a recursive function in Hope. All recursive definitions need
one case (called the base case) where the function isn’t defined in terms of itself, just as Java
loops need a terminating condition.
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1.6 Another way of using functions

Hope allows us to use a function with two arguments like mult as an infix operator. We must
assign it a priority and use it as an operator everywhere including the equations that define
it. The definition of mult when used as an infix operator looks like this:

infix mult : 8 ;
mult : num X num -> num ;
x mult y <= if y = 0 then 0 else x mult ( y - 1 ) + x ;

A bigger number in the infix declaration means a higher priority. The second argument
of mult is parenthesised because its priority of 8 is greater than the built-in subtraction
operation. Most of Hope’s standard functions are supplied as infix operators.

1.7 Other kinds of data

Hope provides two other primitive data types. A truval (truth value) is equivalent to a Java
Boolean and has values true and false. We’ve already seen the expression x > y defining a
truth value. > is a standard function whose type is num # num -> truval. We can use truth
values in conditional expressions and combine them together with the standard functions and,
or and not.

Single characters are of type char, with values ’a’, ’b’ and so on. Characters are most
useful as components of data structures such as character-strings.

2 Data structures

2.1 Tuples and lists

Practical programs need data structures and Hope has two standard kinds already built in.
We can bind a fixed number of objects of any type together into a structure called a tuple,
for example:

( 2, 3 )

or

( ’a’, true )

are tuples of type num # num and char # truval respectively. We use tuples when we want
a function to define more than one value. Here’s one that defines the time of day given the
number of seconds since midnight:

time24 : num -> num X num X num ;
time24 ( s ) <= ( s div 3600,

s mod 3600 div 60,
s mod 3600 mod 60 ) ;

div is the built-in integer division function and mod gives the remainder after integer division.
If we type an application of time24 at the terminal, the result tuple and its type will be
printed on the screen in the usual way:
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time24 ( 45756 ) ;
( 12,42,36 ) : ( num X num X num )

The second standard data type, called a list, corresponds roughly to a one-dimensional array
in Java. It can contain any number of objects (including none at all) but they must all be
the same type. We can write expressions in our programs that represent lists, such as:

[ 1, 2, 3 ]

which is of type list ( num ). There are two standard functions for defining lists. The infix
operator :: (read as ‘cons’) defines a list in terms of a single object and list containing the
same type of object, so

10 :: [ 20, 30, 40 ]

defines the list:

[ 10, 20, 30, 40 ]

Don’t think of :: as adding 10 to the front of [ 20, 30, 40 ]. It really defines a new list [
10, 20, 30, 40 ] in terms of two other objects without changing their meaning, rather in
the same way that 1 + 3 defines a new value of 4 without changing the meaning of 1 or 3.

The other standard list function is nil, which defines a list with no elements in it. We
can represent every list by an expression consisting of applications of :: and nil. When we
write an expression like:

[ a + 1, b - 2, c * d ]

it’s considered to be a shorthand way of writing:

a + 1 :: ( b - 2 :: ( c * d :: nil ) )

There’s also a shorthand way of writing lists of characters. The following three expressions
are all equivalent:

"cat"
[ ’c’, ’a’, ’t’ ]
’c’ :: ( ’a’ :: ( ’t’ :: nil ) )

When the result of a Hope program is a list, it’s always printed out in the concise bracketed
notation; if it’s a list of characters, it’s printed in quotes.

Every data type in Hope is defined by a set of primitive functions like :: and nil. They’re
called constructor functions, and aren’t defined by recursion equations. When we defined a
tuple, we were actually using a standard constructor called , (read as ‘comma’). Later on
we’ll see how constructors are defined for other types of data.

2.2 Functions that define lists

If we wanted to write a Javs program to print the first n natural numbers in descending order
we’d probably write a loop that printed one value out on each iteration, such as:

for (int i= n; i>0;i--) System.out.println(i);
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In Hope we write one expression that defines all the values at once, rather like we did for
mult:

nats : num -> list ( num ) ;
nats ( n ) <= if n = 0 then nil else n :: nats ( n-1 ) ;

nil is useful for writing the base case of a recursive function that defines a list. If we try the
function at the terminal by typing:

nats ( 10 ) ;
[ 10,9,8,7,6,5,4,3,2,1 ] : list ( num )

we can see that the numbers are in descending order because that’s the way we arranged them
in the list, and not because they were defined in that order. The values in the expression
defining the list are treated as though they were all generated at the same time. On the
ALICE machine they actually are generated at the same time.

To get the results of a Hope program in the right order, we must put them in the right
place in the final data structure. If we want the list of the numbers n through 1 in the opposite
order we can’t write the definition as:

... else nats ( n-1 ) :: n ;

because the argument types for :: are the wrong way round. We need to use a another
built-in operation <> (read as ‘append’) that concatenates two lists. The definition will then
look like this:

nats ( n ) <= if n = 0 then nil else nats ( n-1 ) <> [ n ] ;

We put n in brackets to make it into a (single-item) list because <> expects both its arguments
to be lists. We could also have written ( n :: nil ) instead of [ n ].

2.3 Data structures as parameters

Suppose we have a list of integers and we want to write a function to add up all its elements.
The declaration will look like this:

sumlist : list ( num ) -> num ;

We need to refer to the individual elements of the actual parameter in the equations defining
sumlist. We do this using an equation whose left-hand side looks like this:

sumlist ( x :: y ) ...

This is an expression involving list constructors and corresponds to an actual parameter
that’s a list. x and y are formal parameters, but they now name individual parts of the actual
parameter value. In an application of sumlist like:

sumlist ( [ 1, 2, 3 ] )

the actual parameter will be ‘dismantled’ so that x names the value 1 and y names the value
[ 2, 3 ]. The complete equation will be:

sumlist ( x :: y ) <= x + sumlist ( y ) ;
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Notice there’s no base case test. As we might expect, it’s the empty list, but we can’t test
for it directly in the equation because there’s no formal parameter that refers to the whole
list. In fact, if we write the application:

sumlist ( nil )

we’ll get an error message because we can’t dismantle nil to find the values of x and y. We
must cover this case separately using a second recursion equation:

sumlist ( nil ) <= 0 ;

The two equations can be given in either order. When sumlist is applied, the actual pa-
rameter is examined to see which constructor function was used to define it. If the actual
parameter is a non-empty list, the first equation is used, because non-empty lists are defined
using the :: constructor. The first number in the list gets named x and the remaining list y.
If the actual parameter is the empty list, the second equation is be used because empty lists
are defined using the constructor nil.

2.4 Pattern-matching

An expression composed of constructors appearing on the left-hand side of a recursion equa-
tion is called a pattern. Selecting the right recursion equation and dismantling the actual
parameter to name its parts is called pattern-matching. When you write a function, you
must give a recursion equation for each possible constructor defining the argument type.

Sometimes we don’t need to dismantle the actual parameter, and we can use a formal
parameter in the pattern that matches the whole object, irrespective of what constructors
were used to define it. As an example, let’s see how we could define our own function to
concatenate two lists like the built-in operation <>:

infix cat : 4 ;
cat : list( num ) X list( num ) -> list ( num ) ;
( h :: t ) cat l <= h :: ( t cat l ) ;
nil cat l <= l ;

The first list parameter is matched by the pattern ( h :: t ) so that its first item (the
‘head’) and the remaining list (the ‘tail’) can be referred to separately on the right-hand side.
The second recursion equation covers the case when the first list is empty. The second list
parameter is matched by the pattern l whether it’s empty or not.

As well as writing enough recursion equations to satisfy all the parameter constructors,
we must also be careful not to write sets of equations where more than one pattern might
match the actual parameters, because that would be ambiguous.

We can write patterns to match arguments that are tuples in the same way using the tuple
constructor ,. When we wrote mult ( x, y ) you probably thought the parentheses and
the comma were something to do with the function application. In fact, we were constructing
a tuple and the parentheses were only needed because , has a low priority. Hope treats all
functions as having only one argument. This can be a tuple when you want the effect of
several arguments. Without parentheses,

mult x, y
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would be interpreted as:

( mult ( x ), y )

A recursion equation with the left-hand side:

mult ( x, y ) <= ...

is just a pattern-match on a tuple. The first item in the tuple gets named x and the second
one y.

We can also use pattern-matching on num parameters. These are defined by two con-
structors called succ and 0. succ defines a number in terms of the next lower one. 0 has
no arguments and defines the value zero. Surely 0 is a value, not a function? Well, we’re
already used to thinking of function applications as another way of writing values, so it’s
quite consistent to think of 0 as a function application. Here’s a version of mult that uses
pattern-matching to identify the base case:

infix mult : 8 ;
mult : num X num -> num ;
x mult 0 <= 0 ;
x mult succ ( y ) <= ( x mult y ) + x ;

We can read succ ( y ) as ‘the successor of some number that we’ll call y’. Instead of
naming the actual parameter y like we did in the original version of mult, we’re naming its
preessor.

2.5 Simplifying expressions

In Java programs we can simplify complex expressions by removing common sub-expressions
and evaluating them separately. Instead of:

writeln ( ( x + y ) * ( x + y ) ) ;

we would probably write:

z = x + y ; writeln ( z * z ) ;

which is clearer and more efficient. Hope programs consist only of expressions and it’s even
more important to simplify them. We do this by using a qualified expression:

let z == x + y in z * z ;

This looks like an assignment, but it isn’t. == is read as ‘is defined as’ and z is local to the
expression following the in. If we write something like:

let z == z + 1 in z * z ;

we’re actually introducing a new variable z to use in the sub-expression z * z. It hides the
original one in the sub-expression z + 1.

There’s a second form of qualified expression for people who like to use variables first and
define their meanings later. It looks like this:

z * z where z == x + y ;
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The result of the qualified expression is the same whether we define it using let or where. x
+ y is evaluated first, and its value is used in the main expression.

The qualifying expression will often be a function application that defines a data structure.
If we want to name part of the structure we can use a pattern on the left-hand side of the ==
symbol:

time12 : num -> num X num ;
time12 ( s ) <= ( if h > 12 then h-12 else h, m ) where

( h, m, s ) == time24 ( s ) ;

We’ll use this construction most often when we write recursive functions that define tuples.
Here’s a typical example. Suppose we want to form a string of words from a sentence. For
simplicity a word is taken to be any sequence of characters, and words are separated in the
sentence by any number of blanks. The sentence and a single word will be of type list (
char ) and the final sequence of words a list ( list ( char ) ).

It’s fairly straightforward to obtain the first word. Here’s a function that does it:

firsttry : list ( char ) -> list ( char ) ;
firsttry ( nil ) <= nil ;
firsttry ( c :: s ) <= if c = ’ ’

then nil
else c :: firsttry ( s ) ;

One of the nice features of Hope is that we can type in and print out any kind of value, so
it’s easy to check out the individual functions of our program separately. If we test firsttry
we’ll see:

firsttry ( "You may hunt it with forks and Hope" ) ;
"You" : list ( char )

But there’s a problem here because we’re going to need the rest of the sentence if we’re to
find the remaining words. We must arrange that that the function returns the remaining list
as well as the first word. This is where tuples come in:

firstword : list ( char ) -> list ( char ) X list ( char ) ;
firstword ( nil ) <= ( nil, nil ) ;
firstword ( c :: s ) <= if c = ’ ’

then ( nil, s )
else ( ( c :: w, r ) where

( w, r ) == firstword ( s ) ) ;

The qualified expression is parenthesised so it only applies to the expression after the else,
otherwise we’ll evaluate firstword recursively as long as the sentence is non-empty, even if
it starts with a blank. This version of the function produces:

firstword ( "Hope springs eternal ..." ) ;
( "Hope","springs eternal ..." ) : ( list ( char ) X list ( char ) )

We can use this to define a function to split the sentence into a list of its individual words:
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wordlist : list ( char ) -> list ( list ( char ) ) ;
wordlist ( nil ) <= nil ;
wordlist ( c :: s ) <= if c = ’ ’

then wordlist( s )
else ( w :: wordlist ( r ) where

( w, r ) == firstword ( c :: s ) ) ;

which we can test by typing an application at the terminal:

wordlist ( " While there’s life there’s Hope " ) ;
[ "While","there’s","life","there’s","Hope" ] : list ( list ( char ) )

2.6 Review

So far we’ve concentrated on features of Hope that have something in common with traditional
languages such as Java. We’ve also been introduced to the functional style of programming
where programs are no longer recipes for action, but just definitions of data objects.

Now we’ll introduce features of Hope that lift it onto a much higher level of expressive
power, and let us write programs that are not only extremely powerful and concise, but
that can be checked for correctness at compile-time and mechanically transformed into more
efficient versions.

3 Making functions more powerful

3.1 Introducing polymorphic functions

The Hope compiler can spot many common kinds of error by checking the types of all objects
in expressions. This is harder than checking at run-time, but more efficient and saves the
embarrassment of discovering an error at run-time in a rarely-executed branch of the air traffic
control system we just wrote.

However, strict type-checking can be a nuisance if we want to perform some operation
that doesn’t depend on the type of the data. Try writing a Java procedure to reverse an
array of either 10 integers or 10 characters and you’ll see what I mean.

Hope avoids this kind of restriction by allowing a function to operate on more than one
type of object. We’ve already used the standard constructors :: and nil to define a list (
num ), a list ( char ) and a list ( list ( char ) ). The standard equality function =
will compare any two objects of the same type. Functions with this property are called poly-
morphic. Java’s built-in functions abs and sqr and operations like > and = are polymorphic
in a primitive kind of way.

We can define our own polymorphic functions in Hope. The function cat we defined above
will concatenate lists of numbers, but we can use it for lists containing any type of object.
To do this we first declare a kind of ‘universal type’ called a type variable. We use this in the
declaration of cat where it stands for any actual type:

typevar alpha ;
infix cat : 8 ;
cat : list ( alpha ) X list ( alpha ) -> list ( alpha ) ;
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This says that cat has two parameters that are lists and defines a list, but it doesn’t say what
kind of object is in the list. However, alpha always stands for the same type throughout a
given declaration, so all the lists must contain the same type of object. The expressions:

[ 1,2,3 ] cat [ 4,5,6 ]

and

"123" cat "456"

are correctly-typed applications of cat and define a list ( num ) and a list ( char )
respectively, while the expression:

[ 1,2,3 ] cat "456"

isn’t because alpha can’t be interpreted as two different types. The interpretation of a type
variable is local to a declaration so it can have different interpretations in other declarations
without confusion.

Of course it only makes sense for a function to be polymorphic as long as the equations
defining it don’t make any assumptions about types. In the case of cat the definition uses
only :: and nil, which are polymorphic themselves. However, a function like sumlist uses
+ and can only be used with lists of numbers as parameters.

3.2 Defining your own data types

Tuples and lists are quite powerful, but for more sophisticated applications, we’ll need to
define our own types. User-defined types make programs clearer and help the type-checker
to help the programmer. We introduce a new data type in a data declaration:

data vague == yes ++ no ++ maybe ;

data is a reserved word and vague is the name of the new type. == is read as ‘is defined as’
and ++ is read as ‘or’. yes, no and maybe are the names for the constructor functions of the
new type. We can now write function definitions that use these constructors in patterns:

evade : vague -> vague ;
evade ( yes ) <= maybe ;
evade ( maybe ) <= no ;

The constructors can be parameterised with any type of object, including the type that’s
being defined. We can define types like lists, whose objects are of unlimited size using this
kind of recursive definition. As an example, here’s a user-defined binary tree that can contain
numbers as its leaves:

data tree == empty ++ tip ( num ) ++ node ( tree X tree ) ;

There are three constructors. empty has no parameters and defines a tree with nothing in
it. tip defines a tree in terms of a single num, and node defines a tree in terms of two other
trees. Here’s a typical tree:
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Here’s an example of a function that manipulates trees. It returns the sum of all the numbers
contained in one:

sumtree : tree -> num ;
sumtree ( empty ) <= 0 ;
sumtree ( tip ( n ) ) <= n ;
sumtree ( node ( l, r ) ) <= sumtree ( l ) + sumtree ( r ) ;

Unfortunately there’s no shorthand for writing tree constants like there is for list constants,
so we’ve got to write them out the long way using constructors. If we want to use sumtree
to add up all the numbers in the example tree above, we must type in the expression:

sumtree ( node ( node ( tip ( 1 ),
node ( tip ( 2 ),

tip ( 3 ) ) ),
node ( node ( empty,

tip ( 4 ) ),
tip ( 5 ) ) ) ) ;

This isn’t really a drawback, because programs that manipulate complex data structures like
trees will generally define them using other functions. However, it’s very useful to be able to
type any kind of constant data structure at the terminal when we’re checking out an individual
function like sumtree. When we want to test a Java program piecemeal, we usually have to
write elaborate test harnesses or stubs to generate test data.

3.3 Making data more abstract

The identifier list isn’t really a Hope data type. It’s called a type constructor and must be
parameterised with an actual type before it represents one. We did this every time we declared
a list ( num ) or a list ( char ). The parameter can also be a user-defined type, as with
a list ( tree ) or even a type variable as in list ( alpha ), which defines a polymorphic
data type. Constructing new data types like this is a compile-time operation by the way, and
you shouldn’t confuse it with constructing new data values, which is a run-time operation.

You can define your own polymorphic data types. Here’s a version of the binary tree we
defined earlier that can have any type of value in its leaves:

data tree ( alpha ) == empty ++
tip ( alpha ) ++
node ( tree ( alpha ) X tree ( alpha ) ) ;

13



Once again, alpha is taken to be the same type throughout one instance of a tree. If it’s a
number, then all references to tree ( alpha ) are taken as references to tree ( num ).

We can define polymorphic functions that operate on trees containing any type of object,
because tree constructors are now polymorphic. Here’s a function to ‘flatten’ a binary tree
into a list of the same type of object:

flatten : tree ( alpha ) -> list ( alpha ) ;
flatten ( empty ) <= nil ;
flatten ( tip ( x ) ) <= x :: nil ;
flatten ( node ( x, y ) ) <= flatten ( x ) <> flatten ( y ) ;

We can demonstrate it on various kinds of tree:

flatten( node ( tip ( 1 ), node ( tip ( 2 ), tip ( 3 ) ) ) ) ;
[ 1, 2, 3 ] : list ( num )

flatten( node ( tip ( "one" ),
node ( tip ( "two" ),

tip ( "three" ) ) ) ) ;
[ "one","two","three" ] : list ( list ( char ) )

flatten( node ( tip ( tip ( ’a’ ) ),
node ( tip ( empty ),

tip ( node ( tip ( ’c’ ),
empty ) ) ) ) ) ;

[ tip ( ’a’ ),empty,node ( tip ( ’c’ ), empty) ] : list ( tree ( char ) )

Notice how the type-checker may need to go through several levels of data types to deduce
the type of the result.

4 Functions as data

4.1 Even more concise programs

The importance of polymorphic types and functions is that they let us write shorter, clearer
programs. It’s similar to the way Java methods let us use the same code to operate on different
data values, but much more powerful. We can write a single Hope function to reverse a list
of numbers or characters, where we’d need to write two identical Java methods to reverse an
array of integers and an array of characters.

We can use polymorphic functions whenever we’re concerned only with the arrangement
of the objects in a data structure and not with their values. Sometimes, we’ll want to apply
some function to the primitive data items in the structure. Here’s a function that uses a
second function square to define a list (num) whose elements are the squares of another
list (num):

square : num -> num ;
square ( n ) <= n * n ;
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squarelist : list ( num ) -> list ( num ) ;
squarelist ( nil ) <= nil ;
squarelist ( n :: l ) <= square ( n ) :: squarelist ( l ) ;

Every time we write a function to process every element of a list, we’ll write something almost
identical to squarelist. Here’s a function to define a list of factorials:

fact : num -> num ;
fact ( 0 ) <= 1 ;
fact ( succ ( n ) ) <= succ ( n ) * fact ( n ) ;

factlist : list ( num ) -> list ( num ) ;
factlist ( nil ) <= nil ;
factlist ( n :: l ) <= fact ( n ) :: factlist ( l ) ;

factlist has exactly the same ‘shape’ as squarelist, it just applies fact instead of square
and then applies itself recursively. Values that differ between applications are usually supplied
as actual parameters. Hope treats functions as data objects, so we can do this in a perfectly
natural way. A function that can take another function as an actual parameter is called a
higher-order function. When we declare it we must give the type of formal parameter standing
for the function in the usual way. The declaration of fact tells us that it’s:

num -> num

Read this as ‘a function mapping numbers to numbers’. Now let’s see how we can use this idea
to write factlist and squarelist as a single higher- order function. The new function needs
two parameters, the original list, and the function that’s applied inside it. Its declaration will
be:

alllist : list ( num ) X ( num -> num ) -> list ( num ) ;

The ‘shape’ of alllist will be the same as factlist and squarelist, but the function we
apply to each element of the list will be the formal parameter:

alllist ( nil, f ) <= nil ;
alllist ( n :: l, f ) <= f ( n ) :: alllist ( l, f ) ;

We use alllist like this:

alllist ( [ 2,4,6 ], square ) ;
[ 4,16,36 ] : list ( num )

alllist ( [ 2,4,6 ], fact ) ;
[ 2,24,720 ] : list ( num )

Notice that there’s no argument list after square or fact in the application of alllist, so
this construction won’t be confused with functional composition. fact( 3 ) represents a
function application, but fact by itself represents the unevaluated function.

Higher-order functions can also be polymorphic. We can use this idea to write a more
powerful version of alllist that will apply an arbitrary function to every element of a list
of objects of arbitrary type. This version of the function is usually known as map:
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typevar alpha, beta ;
map : list ( alpha ) X ( alpha -> beta ) -> list ( beta ) ;
map ( nil, f ) <= nil ;
map ( n :: l, f ) <= f ( n ) :: map ( l, f ) ;

The definition now uses two type variables alpha and beta. Each one represents the same
actual type throughout one instance of map, but the two types can be different. This means
we can use any function that maps alphas to betas to generate a list of betas from any list of
alphas.

The actual types aren’t restricted to scalars, which makes map rather more powerful than
we might realise at first sight. Suppose we’ve got a suitably polymorphic function that finds
the length of a list:

typevar gamma ;
length : list ( gamma ) -> num ;
length ( nil ) <= 0 ;
length ( n :: l ) <= 1 + length ( l ) ;

length ( [ 2,4,6,8 ] ) + length ( "cat" ) ;
7 : num

We can use map to apply length to every element of a list of words defined by wordlist:

map ( wordlist ( "The form remains, the function never dies" ), length ) ;
[ 3,4,8,3,8,5,4 ] : list ( num )

In this example alpha is taken to be a list ( char ) and beta to be a num, so the type of
the function must be ( list ( char ) -> num ). length fits the bill if gamma is taken to
be a character.

4.2 Common patterns of recursion

map is powerful because it sums up a pattern of recursion that turns up frequently in Hope
programs. We can see another common pattern in the function length used above. Here’s
another example of the same pattern:

sum : list ( num ) -> num ;
sum ( nil ) <= 0 ;
sum ( n :: l ) <= n + sum ( l ) ;

The underlying pattern consists of processing each element in the list and accumulating a
single value that forms the result. In sum, each element contributes its value to the final
result. In length the contribution is always 1 irrespective of the type or value of the element,
but the pattern is identical. Functions that display this pattern are of type:

( list ( alpha ) -> beta )

In the function definition, the equation for a non-empty list parameter will specify an oper-
ation whose result is a beta. This is + in the case of length and sum. One argument of the
operation will be a list element and the other will be defined by a recursive call, so the type
of the operation needs to be:
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( alpha X beta -> beta )

This operation differs between applications, so it will be supplied as a parameter. Finally
we need a parameter of type beta to specify the base case result. The final version of the
function is usually known as reduce. In the following definition, the symbol ! introduces a
comment, which finishes with another ! or with a newline:

reduce : list ( alpha ) X ! the input list !
( alpha X beta -> beta ) X ! the reduction operation !
beta ! the base case result !

-> beta ; ! the result type !
reduce ( nil, f, b ) <= b ;
reduce ( n :: l, f, b ) <= f ( n, reduce ( l, f, b ) ) ;

To use reduce as a replacement for sum we’ll need to supply the standard function + as an
actual parameter. We can do this if we prefix it with the symbol nonop to tell the compiler
we don’t want to use it as an infix operator:

reduce ( [ 1,2,3 ], nonop +, 0 ) ;
6 : num

When we use reduce as a replacement for length, we’re not interested in the first argument
of the reduction operation because we always add 1 whatever the list element is. This function
ignores its first argument:

addone : alpha X num -> num ;
addone ( _ , n ) <= n + 1 ;

We use to represent any argument we don’t want to refer to.

reduce ( "a map they could all understand", addone, 0 ) ;
31 : num

Like map, reduce is much more powerful than it first appears because the reduction function
needn’t define a scalar. Here’s a candidate that inserts an object into an ordered list of the
same kind of object:

insert : alpha X list ( alpha ) -> list ( alpha ) ;
insert ( i, nil ) <= i :: nil ;
insert ( i, h :: t ) <= if i < h

then i :: ( h :: t )
else h :: insert ( i, t ) ;

Actually this isn’t strictly polymorphic as its declaration suggests, because it uses the built-in
function <, which is only defined over numbers and characters, but it shows the kind of thing
we can do. When we use it to reduce a list of characters:

reduce ( "All sorts and conditions of men", insert, nil ) ;
" Aacddefiillmnnnnoooorssstt" : list ( char )
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we can see that it actually sorts them. The sorting method (insertion sort) isn’t very efficient,
but the example shows something of the power of higher-order functions and of reduce in
particular. It’s even possible to use reduce to get the effect of map, but that’s left as an
exercise for the reader as they say.

Of course map and reduce only work on list ( alpha ) and we’ll need to provide differ-
ent versions for our own structured data types. This is the preferred style of Hope program-
ming, because it makes programs largely independent of the ‘shape’ of the data structures
they use. Here’s an alternative kind of binary tree that holds data at its nodes rather than
its tips, and a reduce function for it:

data tree ( alpha ) == empty ++
node ( tree ( alpha ) X alpha X tree ( alpha ) ) ;

redtree : tree ( alpha ) X
( alpha X beta -> beta ) X
beta -> beta ;

redtree ( empty, f, b ) <= b ;
redtree ( node ( l, v, r ), f, b ) <=

redtree ( l, f, f ( v, redtree ( r, f, b ) ) ) ;

We can use this kind of tree to define a more efficient sort. An ordered binary tree has the
property that all the objects in its left subtree logically precede the node object and all those
in its right subtree are equal to the node object or logically succeed it. We can build an
ordered tree if we have a function to insert new objects into an already-ordered tree, such as:

instree : alpha X tree ( alpha ) -> tree ( alpha ) ;
instree ( i, empty ) <= node ( empty, i, empty ) ;
instree ( i, node ( l, v, r ) ) <=

if i < v
then node ( instree ( i, l ), v, r )
else node ( l, v, instree ( i, r ) ) ;

We can sort a list by converting its elements into an ordered tree using instree, then flat-
tening the tree back into a list. This is very easy to specify using the two kinds of reduction
we’ve defined:

sort : list ( alpha ) -> list ( alpha ) ;
sort ( l ) <= redtree( reduce ( l, instree, empty ), nonop ::, nil ) ;

sort ( "Mad dogs and Englishmen" ) ;
" EMaadddegghilmnnnoss" : list ( char )

4.3 Anonymous functions

When we used map and reduce, we had to define extra functions like fact and square to
pass in as parameters. This is a nuisance if we don’t need them anywhere else in the program
and especially if they’re trivial, like sum or addone. For on-the-spot use in cases like this,
we can use an anonymous function called a lambda-expression. Here’s a lambda-expression
corresponding to sum:
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lambda ( x, y ) => x + y

The symbol lambda introduces the function and x and y are its formal parameters. The
expression x + y is the function definition. The part after lambda is just a recursion equation
without the and with => instead of <=. Here’s another lambda-expression used as the actual
parameter of reduce:

reduce ( [ "toe","tac","tic" ], lambda ( a, b ) => b <> a, nil ) ;
"tictactoe" : list ( char )

There can be more than one recursion equation in the lambda- expression. They’re separated
from each other by the symbol | and pattern-matching is used to select the appropriate one.
Here’s an example that uses pattern-matching in a lambda-expression to avoid division by
zero when the function it defines is executed:

map ( [ 1,0,2,0,3 ], lambda ( 0 ) => 0
| ( succ ( n ) ) => 100 div succ ( n ) ) ;

[ 100,0,50,0,33 ] : list ( num )

4.4 Functions that create new functions

As we’ve seen, Hope functions possess ‘full rights’ and can be passed as actual parameters
like any data object. It’ll be no surprise to learn that we can return a function as the result
of another function. The result can be a named function or an anonymous function defined
by a lambda-expression. Here’s a simple example:

makestep : num -> ( num -> num ) ;
makestep ( i ) <= lambda ( x ) => i + x ;

makestep ( 3 ) ;
lambda ( x ) => 3 + x : num -> num

As we can see from trying makestep, its result is an anonymous function that adds a fixed
quantity to its single argument. The size of the increment was specified as an actual parameter
to makestep when the new function was created, and has become ‘bound in’ to its definition.
If we try the new function, we’ll see that it really does add 3 to its actual parameter:

makestep ( 3 ) ( 10 ) ;
13 : num

There are two applications here. First we apply makestep to 3, then the resulting anonymous
function is applied to 10. Finally, here’s a function that has functions as both actual parameter
and result:

twice : ( alpha -> alpha ) -> ( alpha -> alpha ) ;
twice ( f ) <= lambda ( x ) => f ( f ( x ) ) ;

twice defines a new function that has a single argument and some other function f bound
into its definition. The new function has the same type as f. We can see its effect using a
simple function like square:
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twice ( square ) ;
lambda ( x ) => square( square ( x ) ) : num -> num

twice ( square ) ( 3 ) ;
81 : num

The new function applies the bound-in function to its argument twice. We can even bind
in twice itself, generating a new function that behaves like twice except that the function
eventually bound in will be applied four times:

twice ( twice ) ;
lambda ( x ) => twice ( twice ( x ) ) :

( alpha -> alpha ) -> ( alpha -> alpha )

twice ( twice ) ( square ) ( 3 ) ;
43046721 : num

5 In conclusion

In this article you’ve been introduced to the ideas of functional programming through one
of the new generation of functional languages. You saw how a Hope program is just a series
of functions that are regarded as definitions of parts of a data structure the ‘results’ of the
program and how the powerful idea of higher-order functions allows us to capture many
common program patterns in a single function.

Some of these ideas will already be familiar to users of LISP, but they appear in a purer
form in Hope, because there are no mechanisms for updating data structures like LISP’s
SETQ and RPLACA or for specifying the order of evaluation like GO and PROG. Unlike LISP
programs, Hope programs are free from side-effects and possess the mathematical property
of referential transparency.

You also saw features that are primitive or lacking in LISP and in most imperative lan-
guages. The data declaration lets you define complex data types without worrying about how
they’re represented and pattern- matching lets you ompose them, so you can use abstract
data types directly without writing access procedures and without the need to invent lots of
new names. The typing mechanism lets the compiler check that you’re using data objects in
a correct and consistent way, while the idea of polymorphic types stops the checking from
being too restrictive and lets you define common data ‘shapes’ with a single function.

Higher-order functions and polymorphic types allow us to write programs that are very
concise. Programmers are more productive and their programs are easier to understand and
to reason about. The property of referential transparency improves our ability to reason about
programs still further and makes it possible to transform them mechanically into programs
that are still provably correct, but more efficient in their use of space or time. Finally,
referential transparency keeps the meaning of Hope programs independent of the order they’re
evaluated in, making them ideal for parallel evaluation on suitable machines. You’ll be seeing
a lot more of Hope and languages like it in the future.

20


