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Abstract
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structure, but whose expressions may differ. We prove that given any two linear, free,
liberal structured schemas, it is decidable whether they are equivalent. Our main
result considerably extends the class of program schemas for which equivalence is
known to be decidable, and suggests that linearity is a constraint worthy of further
investigation.
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1 Introduction

A program schema represents the statement structure of a program by replacing real
functions and predicates with function and predicate symbols taken from sets F and
P respectively. A schema, S, thus defines a whole class [S] of programs all of the
same structure. Each program in [S] can be obtained from S via a mapping called
an interpretation which gives meanings to the function and predicate symbols in S.
As an example, Figure 1 gives a schema S; and the program P of Figure 2 is in the
class [S]. The subject of schemas is connected with that of program transformation
and was originally motivated by the wish to compile programs effectively.

u :=h();

if p(w) then v := f(u);

else v := g();

Fig. 1. Schema S

u := 1;

if w > 1 then v := u + 1;

else v := 2;

Fig. 2. Program P

This paper gives a class of schemas for which equivalence is decidable. Equivalence is
defined as follows. Given any variable v in a variable set V, we say that schemas S, T
are v-equivalent 1 , written S ∼=v T, if given any interpretation and an initial state
(that is, a mapping from the set of variables into some fixed domain) the programs
defined by S and T give the same final value to the variable v, provided they both
terminate. We also define S ∼=ω T to mean that given any interpretation and given
any initial state, the programs defined by S and T either both terminate or both fail
to terminate. Thus the schema T of Figure 3 satisfies S ∼=v T , with S as in Figure
1; but S ∼=ω T does not hold. The relation ∼= (‘equivalence’) means the conjunction
of the relation ∼=ω and the relations ∼=v for all variables v. Some researchers use the
phrase ‘functional equivalence’ to refer to the relation ∼=V∪{ω} and ‘weak equivalence’
for ∼=V .

This definition of equivalence takes no account of relations between the symbols, or
requirements that a function or predicate symbol have a certain meaning, although

1 For the class of all schemas the relation ∼=v is not transitive, as an example in Section 5
shows, but it is an equivalence relation for the class of free, structured, linear schemas in
which we will be working (Proposition 22).
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while q(v) do v := k(v);

if p(w) then

{

u :=h();

v := f(u);

}

else v := g();

Fig. 3. Schema T

definitions of equivalence for which interpretations are defined in this more restricted
way have been considered (see Subsection 2.5).

Traditionally schemas were defined using a set of labelled statements (see Subsection
2.1) or equivalently a flow diagram. In Section 2 we discuss this class of schemas.
All results proved in this paper only concern structured schemas, 2 in which goto
statements are forbidden, and predicate symbols are only used to build if statements,
of the form if q(u) then T1 else T2, or while statements, of the formwhile p(u) do T ;
where in both cases u is a finite tuple of variables.

It has been shown that it is decidable whether two structured schemas which are
Conservative, Free and Linear (CFL), are equivalent [2]. The main result of this paper,
Theorem 148, is a strengthening of this result; that it can be decided in polynomial
time whether two structured schemas which are Liberal, Free and Linear (LFL), are
equivalent.

1.1 Decidability results for different classes of schemas

Many subclasses of schemas have been defined:

Linear schemas, in which each function and predicate symbol occurs at most once. 3

Conservative schemas, in which every assignment is of the form
v := f(v1, . . . , vr) where v ∈ {v1, . . . , vr}.

Free schemas, where all paths are executable under some interpretation.
Liberal schemas, in which two assignments along any legal path can always be

made to assign distinct values to their respective variables.

2 Some authors, for example Manna [1], use the phrase while schema for what we call
a structured schema (except that Manna allows statements like while ¬p(u) do T ); in this
paper a while schema means a structured schema consisting of a while loop (Definition 4).
3 Some authors use the phrase ‘non-repeating schemas’ to refer to what we call linear
schemas.
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The last three of these classes were first introduced by Paterson [3]. Of these con-
ditions, the first two can clearly be decided for the class of all schemas. Paterson
[3] also proved, using a reduction from the Post Correspondence Problem, that it is
not decidable whether a schema is free. He also showed however that it is decidable
whether a schema is both liberal and free; and since he also gave an algorithm for
transforming a schema S into a schema T such that T is both liberal and free if and
only if S is liberal, it is clearly decidable whether a schema is liberal. It is an open
problem whether freeness is decidable for the class of linear schemas.

All results on the decidability of equivalence of schemas are either negative or confined
to very restrictive classes of schemas. In particular Paterson [3] proved, in effect, that
equivalence is undecidable for the class of all (unstructured) schemas. He proved this
by showing that the halting problem for Turing machines (which is, of course, unde-
cidable) is reducible to the equivalence problem for the class of all schemas. Ashcroft
and Manna showed [4] that an arbitrary schema can be effectively transformed into an
equivalent structured schema, provided that statements such as while ¬p(u) do T are
permitted; hence Paterson’s result shows that any class of schemas for which equiv-
alence can be decided must not contain this class of schemas. Thus in order to get
positive results on this problem, it is clearly necessary to define the relevant classes
of schema with great care.

Although the class of linear schemas considered in this paper is a highly restrictive one,
it has the merit that linear schemas are the main objects studied in the field of Program
Slicing (see Subsection 2.6), and that this is therefore a particularly important class.

1.2 Organisation of the Paper

1.2.1 Section 2

Here we give an overview of the history of schemas, and also give some of the formal
definitions which will be used in the rest of the paper. In particular, the definition of
an interpretation will be formally given.

1.2.2 Section 3

Here we give further definitions. In particular we formally define the structured and
linear schemas with which we will be working in the remainder of the paper. We define
the syntactic (binary) data dependence relation  S (Definition 25) which defines
which terms can be generated by following a path through a linear schema S. We
then define the relations outwhileS, outif S, backS and thruS which strengthen the S
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relation (Definition 29). We also define the relation <<S which expresses the order in
which symbols occur in a path through a linear schema S (Definition 34), and the
relation ցS , when expresses that fact that a symbol ‘lies below’ a predicate symbol
(Definition 7).

We define (in Definition 35) the set NS(u), the set of function and predicate symbols
needed by u ∈ V ∪{ω}∪Symbols (S) in S; this is the set of symbols in S which might
conceivably affect the final value of u (if u ∈ V ∪ {ω}) or the term defined by a path
passing through u (if u is a symbol of S). The set NS(u) is syntactically defined.

We will then define the syntactic relation similu , which itself is defined as the con-
junction of 13 separate conditions, between linear structured schemas (Definition 38).
Most of the paper is devoted to proving that S ∼=V T ⇐⇒ S similV T holds for any
set V ⊆ V ∪ {ω} such that ω ∈ V , and since simil is defined syntactically, it can
easily be decided whether S similu T holds for any u ∈ V ∪ {ω}. Our main Theorem
follows from this result.

Informally, for two linear structured schemas S, T to satisfy S similu T , the following
must hold;

• NS(u) = NT (u). (Condition (1) of S similu T ).
• S and T have the same data dependence relations among those symbols in NS(u).

(Conditions (4), (5),(6) of S similu T ).
• S and T have the same set of if predicates and while predicates, of those lying in
NS(u) (Conditions (2), (3) of S similu T ).

• S and T have the same set of symbols lying in the body of each while predicate, of
those lying in NS(u) (Condition (8) of S similu T ). If u = ω a weaker statement also
holds for while predicates lying under if predicates (Condition (7) of S similu T ).
Also, the bodies of while predicates in S and T satisfy the same data dependence
relations between symbols lying in NS(u) (Conditions (9), (12) of S similu T ).

• Conditions (10) and (13) of S similu T are a kind of counterpart for function symbols
lying under if predicates to Condition (8) for symbols lying under while predicates.

• Condition (11) of S similu T restricts the ordering of symbols in a linear schema.

1.2.3 Section 4

In this Section we prove that S similu T implies S ∼=u T for every u ∈ V ∪ {ω} and
linear structured schemas S, T (Theorem 55).

1.2.4 Section 5

Here we define an Fpu-couple for a schema S, where F ∈ F∗ and p is any predicate
symbol in S. This is a pair of interpretations which define distinct final values for u
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and differ only on one p-predicate term p(t), where the vector term t is an F -term
(Definition 28). We will also prove that the existence of Fpu-couples for a schema is
preserved by u-equivalence.

1.2.5 Section 6

Here we prove that u-equivalent LFL schemas have the same set of u-needed symbols
and the same data dependencies between these symbols (Theorem 75).

1.2.6 Section 7

We define the notion of a passage in a schema (Definition 78) and use this to prove
an important theorem, Theorem 90.

1.2.7 Section 8

Here we show that u-equivalent LFL schemas S and T have essentially the same set
of if predicates and while predicates (Theorem 96).

1.2.8 Section 9

In this section, we use the theory of pu-couples to show that u-equivalent LFL schemas
satisfy similarities in syntactic structure (Theorems 105, 103 and Corollary 104).

1.2.9 Section 10

Here the concept of an external predicate term is defined and various results (in
particular Lemma 117 and Corollary 116) are proved using this concept, which will
be used in Section 11.

1.2.10 Section 11

Here the results in the preceding section are used to prove that if S ∼=u T then S and
T have essentially the same set of symbols lying in the body of each while predicate
(Theorem 126). (As the function symbol h in the LFL schemas S and T in Figures
1 and 3 shows, no such simple statement holds for symbols lying under if predicates,
although if u = ω then Theorem 118, which is also proved in Section 11, shows that
S and T have the same set of while predicates lying under if predicates.)
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1.2.11 Section 12

Here we show that if S ∼=u T then the bodies of corresponding while predicates in S
and T satisfy the same data dependencies (Theorem 127).

1.2.12 Section 13

Here we prove that u-equivalence implies Condition (11) of u-similarity, which restricts
the order in which function symbols in S and T can occur. We also give an example
to show that Condition (11) of u-similarity is not implied by the other Conditions of
u-similarity.

1.2.13 Section 14

Here we prove that {u, ω}-equivalence implies Conditions (12) and (13) of {u, ω}-
similarity (Theorem 147). Both conditions are concerned with the symbols in the body
of a while predicate in S and T . We also give an example to show that Condition (13)
of u-similarity is not implied by the other Conditions of u-similarity.

1.2.14 Section 15

Here we state formally the main theorem and discuss further possible directions.
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2 Basic definitions and discussion of schemas

Definition 1 (symbol sets) Throughout this paper, F , P and V denote fixed infi-
nite sets of function symbols, of predicate symbols and of variables respectively. We
assume a function

arity : F ∪ P → N.

The arity of a symbol x is the number of arguments referenced by x. We assume that
for each n ∈ N there are infinitely many elements of F and P of arity n, so we never
run out of symbols of any required arity. Note that in the case when the arity of a
function symbol g is zero, g may be thought of as a constant.

Definition 2 (Terms) The set Term(F ,V) of terms is defined as follows:

• each variable is a term,
• if f ∈ F is of arity n and t1, . . . , tn are terms then f(t1, . . . , tn) is a term. If each

term ti is a variable, then f(t1, . . . , tn) is called a function expression.

We refer to a tuple t = (t1, . . . , tn), where each ti is a term, as a vector term. We call
p(t) a predicate term if p ∈ P and the number of components of the vector term t is
arity(p). If each component of t is a variable, then p(t) is called a predicate expression.

2.1 Schema Definition

The first task is to define the class of schemas that are to be considered. In Section
3, Definition 4, we will give the formal definition of the class of structured schemas
with which we will be working. In order to give a historical sketch of the study of
schemas, we give here a more general definition. An (unstructured) schema is a finite
sequence of statements, each beginning with a label, a positive integer, such that
no two statements have the same label. Each statement has one of four forms; an
assignment statement, n : v := f(v); for a function expression f(v), an if statement,
n : if p(w) then goto L1 else goto L2;, where p(w) is a predicate expression and L1, L2

are labels of statements, a goto statement, n : goto L, or a STOP statement, n :
STOP . An example of an unstructured schema, taken from [5], is

1 : w := f1();
2 : goto 5;
3 : w := f2(v, w);
4 : v := f3(v);
5 : if p(v) then goto 6 else goto 3;
6 : STOP .
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2.2 Schema Semantics

The symbols upon which schemas are built are given meaning by defining the notions
of a state and of an interpretation. It will be assumed that ‘values’ are given in a
single set D, which will be called the domain.

Definition 3 (states, (Herbrand) interpretations and the natural state e)
Given a domain D, a state is either ⊥ (denoting non-termination) or a function
V → D. The set of all such states will be denoted by State(V, D). An interpretation
i defines, for each function symbol f ∈ F of arity n, a function f i : Dn → D, and for
each predicate symbol p ∈ P of arity m, a function pi : Dm → {T, F}. The set of all
interpretations with domain D will be denoted Int(F ,P, D).
When the domain used is Term(F ,V), an interpretation i is said to be Herbrand if
the functions f i : Term(F ,V) → Term(F ,V) for each f ∈ F are defined as

f i(t1, . . . , tn) = f(t1, . . . , tn)

for all n-tuples of terms (t1, . . . , tn).
In the case when the domain is Term(F ,V), the natural state e : V → Term(F ,V) is
defined by e(v) = v for all v ∈ V.

Note that an interpretation i being Herbrand places no restriction on the mappings
pi : (Term(F ,V))m → {T, F} defined by i for each p ∈ P.

It is well known [1, Section 4-14] that Herbrand interpretations are the only ones that
need to be considered when considering equivalence of schemas. This fact is stated
more precisely in Theorem 21.

A program is obtained from a schema S and an interpretation i by replacing all
symbols f ∈ F and p ∈ P in S by f i and pi; and given an initial state d ∈ State(V, D),
this program defines a final state

M[[S]]id ∈ State(V, D)

in the obvious way. (If the program fails to terminate for an initial state d, or if d = ⊥,
then we define M[[S]]id = ⊥.)

For example if D = N and f i
1() = 1, f i

2(m, n) = m × n, f i
3(n) = max(n − 1, 0) and

pi(0) = T and m ≥ 1 ⇒ pi(m) = F, then the schema in Subsection 2.1 defines the
program

1 : w := 1;
2 : goto 5;
3 : w := v × w;
4 : v := max(v − 1, 0);
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5 : if v < 1 then goto 6 else goto 3;
6 : STOP

computing the familiar factorial function; M[[S]]id(w) = (d(v))!.

In Subsection 3.3 we give a formal definition of the semantics of a structured schema;
for the class of unstructured schemas discussed in this Section, the sketch above seems
sufficient.

2.3 Free and liberal schemas

The definitions of free and liberal schemas were invented in [3]. A schema can be
represented by a finite directed graph (flow diagram) whose nodes are labeled by
assignments, predicate statements, START or STOP . Let us call a path through a
schema’s flow diagram beginning at the START node legal if there is a Herbrand
interpretation such that the program thus defined follows that path if each variable
v ∈ V has the initial value v (that is, e is the initial state). A schema is free if all
paths through its flow diagram beginning at the START node are legal. A schema is
liberal if for any legal path through its flow diagram, any two assignment statements
through which the path passes under a Herbrand interpretation from the initial state
e, define different elements of the domain Term(F ,V).

For example the schema

1 : v := f(u);
2 : w := f(u);

is not liberal if v 6= u, since for any interpretation, the variables v, w define the same
element of the Herbrand domain (Term(F ,V), that is) at the respective executions
of the two statements. It is however liberal if v = u.

All predicate-free schemas (that is, schemas which have no predicate symbols) are
free; the schema

1 : v := f(u);
2 : if p(v)goto 1 else goto 3;
3 : STOP

is not free if v 6= u, as the statement sequence 12123 cannot be executed by any
interpretation with any initial state, since the variable v would define the same term
on both occasions that statement 2 was executed.

12



As mentioned in the introduction, it was proved in [3] that it is decidable whether a
schema is liberal, or liberal and free, but not whether a schema is free.

2.4 Positive results on the decidability of schema equivalence

Besides the result of [2] mentioned above, positive results on the decidability of equiv-
alence of schemas include the following; in an early result in schema theory, Ianov [6]
introduced a restrictive class of schemas, the Ianov schemas, for which equivalence is
decidable. Ianov schemas are monadic (that is, they contain only a single variable)
and all function symbols are unary; hence Ianov schemas are conservative.

Paterson [3] proved that equivalence is decidable for a class of schemas called pro-
gressive schemas, in which every assignment references the variable assigned by the
previous assignment along every legal path.

Sabelfeld [7] proved that equivalence is decidable for another class of schemas called
through schemas. A through schema satisfies two conditions: firstly, that on every path
from an accessible predicate p to a predicate q which does not pass through another
predicate, and every variable x referenced by p, there is a variable referenced by q
which defines a term containing the term defined by x, and secondly, distinct variables
referenced by a predicate define distinct terms under any Herbrand interpretation
(Definition 3).

2.5 Variations on the Definition of Schemas and Interpretations

Other work on schemas considers the relative power of different schema languages [8–
13]. In order to do this, the restriction that all functions in a schema are uninterpreted
is relaxed, leading to the formulation of semi interpreted schemas in which some
information about the nature of the functions in a schema is available.

Chandra and Manna [12] consider schemas with equality. A schema with equality is a
schema in which there is a predicate symbol, which under any interpretation defines
the equality test. The authors show that there are schemas with equality which are
not equivalent to any schema without the equality symbol; thus adding the equality
symbol gives a real increase in expressive power. They also show that equivalence of
Ianov schemas with equality is undecidable.

Chandra [11] has also considered the consequence of specifying function symbols to
be invertible (that is, to define invertible functions on the domain of computation)
and specifying pairs of function symbols to commute. As with Ianov’s paper, he only
considers schemas with one variable, in which all function symbols are unary. He shows
that the equivalence problem remains solvable if either commuting function symbols,
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or invertible function symbols are allowed, but not both.

Functional schemas have a similar relationship to functional programs as the pro-
gram schemas considered here do to imperative programs. An example of a functional
program is

F (v) = if (v = 0) then 1 else vF (v − 1);

an example of a functional schema defining this program would be

F (v) = if (p(v)) then f() else h(v, F (g(v))).

Ashcroft, Manna and Pnueli [14] define a functional schema to be a finite set of expres-
sions of this form, in which the uppercase function symbols (the function variables)
appear on the left of exactly one such expression in the set. An interpretation for a
functional schema interprets only the lowercase function symbols and the predicate
symbols. Thus a functional schema and an interpretation define a function for each
function variable.

It can be easily shown that any monadic program schema S with variable v can
be effectively converted into a monadic functional schema, one of whose function
variables defines the value M[[S]]id(v) for any state d and interpretation i. The converse
statement is false however; Paterson [15] proved that there is no program schema
having any number of variables ‘equivalent’ in this sense to the monadic functional
schema

F (v) = if p(v) then v else f1(F0(F0(f2(v)))).

Thus functional schemas extend the expressive power of program schemas.

Two function schemas are said to be equivalent if for every interpretation they define
the same function for each function variable. The authors consider a subclass of func-
tional schemas which they call the free functional schemas (whose definition is similar
to that of freeness for program schemas) and show that it is decidable whether two
free monadic functional schemas (that is, functional schemas with only one variable)
are equivalent. This result implies that equivalence of free monadic program schemas
is decidable.

These alternative schema definitions use restrictions which are quite different to those
used in this paper; in particular no other positive result for any class of linear schemas
seems to have been proved, apart from that in [2].

2.6 Relevance of schema theory to program slicing

Our interest in the theory of program schemas is motivated in part by applications in
program slicing. Slicing has many applications including program comprehension [16],
software maintenance [17], [18], [19], [20], debugging [21], [22], [23], [24], testing [25],
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[26], [27], re-engineering [28], [29], component reuse [30], [31], program integration [32],
and software metrics [33], [34], [35]. There are several surveys of slicing techniques,
applications and variations [36], [37], [38]. All applications of slicing rely on the fact
that a slice is faithful to a projection of the original program’s semantics, yet it is
typically a smaller program.

The field of (static) program slicing is largely concerned with the design of algorithms
which given a program and a variable v, eliminate as much code as possible from
the program, such that the program (slice) consisting of the remaining code, when
executed from the same initial state, will still give the same final value for v as the
original program, and preserve termination. One algorithm is thus better than another
if it constructs a smaller slice.

No algorithm exists that is guaranteed to delete all the code affecting the final value
of the given variable. To see this, consider a program P , and define the program Q
to be P followed by the assignment w := 1;. (We assume that the variable w does not
occur in P .) This final assignment is ‘needed’ in Q by the variable w if and only if
P terminates for at least one input state; hence the halting problem for programs,
which is undecidable, can be obtained by reduction from the ‘slicing problem’ defined
above.

Slicing algorithms do not normally take account of the meanings of the functions and
predicates occurring in a program, nor do they ‘know’ when the same function or
predicate occurs in more than one place in a program. In effect, therefore, they work
with a linear schema defined by the program, and the semantic properties which slices
of programs are required to preserve are defined in terms of schema semantics. This
motivates the study of schemas, which represent large classes of programs.

Weiser [39] showed that given a program and a variable v, there was a particular set
of functions and predicates (corresponding to our set NS(v) for schemas in Definition
35) which may affect the final value of v; the symbols not lying in this set may simply
be deleted without affecting the final value of v. In Theorem 42 we generalise this by
considering ω-equivalence as a slicing criterion. Our main theorem shows that if S is
LFL then none of the symbols in NS(u) (for u ∈ V ∪ {ω}) can be deleted from S
without giving a u-inequivalent schema. This is however false for the class of schemas
which are merely linear and free; a counterexample is given in Figure 6 in Section 5.
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3 Further definitions and lemmas for structured schemas

This Section gives precise definitions of the syntax and semantics of structured schemas.

Definition 4 (structured schemas) We define the set Sch(F ,P,V) of all struc-
tured schemas recursively as follows. The empty schema Λ ∈ Sch(F ,P,V). An assign-
ment y := f(x); where y ∈ V, and f(x) is a function expression, lies in Sch(F ,P,V).
From these all schemas in Sch(F ,P,V) may be ‘built up’ from the following constructs
on schemas;

sequences; S ′ = U1U2 . . . Ur ∈ Sch(F ,P,V) provided that each schema

U1, . . . , Ur ∈ Sch(F ,P,V).

We define SΛ = ΛS = S for all schemas S.
if schemas; S ′′ = if p(x) then {T1} else {T2} lies in Sch(F ,P,V) whenever p(x) is a

predicate expression and T1, T2 ∈ Sch(F ,P,V).
while schemas; S ′′′ = while q(y) do {T} lies in Sch(F ,P,V) whenever q(y) is a pred-

icate expression and T is a schema.

Finally, |S| will denote the total number of function and predicate symbols in S, with
n distinct occurrences of the same symbol counting n times.

Thus a schema is a word in a language over an infinite alphabet, for which Λ is the
empty word. We normally omit the braces { and } if this causes no ambiguity. Also,
we may write if p(x) then {T1} instead of
if p(x) then {T1} else {T2} if T2 = Λ.

Observe that f(x) and p(x) in Definition 4 are always function and predicate expres-
sions ; that is, the components of the vector term x are variables.

For the remainder of this paper, the word ‘schema’ is intended to mean ‘structured
schema’.

In Definition 4 S ′′ will be referred to as an if schema; and S ′′′ as a while schema.
The predicate symbols p and q are called the guards of the schemas S ′′ and S ′′′,
respectively.

The sets of if and while predicate symbols occurring in a schema S are denoted by
ifPreds(S) and whilePreds(S); their union is Preds(S). We define Funcs(S) ⊆ F to
be the set of function symbols in S and define Symbols (S) = Funcs(S)∪Preds(S). A
schema without predicates is called predicate-free; a schema without while predicates
is called while-free.

Definition 5 (linear schemas) If no element of F ∪ P appears more than once in
a schema S, then S is said to be linear. If a linear schema S contains an assignment
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y := f(x) then we define assignS(f) = y, refvecS(f) = x and the set of components
of x is RefsetS(f) ⊆ V. If p ∈ Preds(S) then refvecS(p) and RefsetS(p) are defined
similarly.

3.1 Subschemas of Linear Schemas

The subschemas of a schema are defined as follows; the empty sequence Λ is a sub-
schema of every schema; if S ∈ Sch(F ,P,V) is an assignment or Λ then the only
subschemas of S are S itself and Λ; the subschemas of U1 . . . Ur are those of each
Uj for 1 ≤ j ≤ r and also the schemas UiUi+1 . . . Uj for i ≤ j; the subschemas of
S ′′ = if p(x) then {T1} else {T2} are S itself and those of T1 and T2; the subschemas
of S ′′′ = while q(y) do {T} are S ′′′ itself and those of T . The subschemas T1 and T2

of S ′′ are called the true and false parts of p (or of S ′′). In the while schema the
subschema T is called the body of q (or of S ′′′).

Definition 6 (subschemas S(p), partXS (p) and bodyS(p)) Let S be a linear schema.
If p ∈ Preds(S) then we sometimes write S(p) for the while or if subschema of S of
which p is the guard.
Also, if p ∈ ifPreds(S) and X ∈ {T, F} then we may write partXS (p) for the X-part
of p in S.
If p ∈ whilePreds(S) then bodyS(p) is the body of p in S.

Definition 7 (the ցS ‘lying below’ relation, ‘immediately below’) Let S be
a linear schema. If p ∈ Preds(S), we write p ցS x to mean x ∈ Symbols (bodyS(p)) if
p ∈ whilePreds(S) and x ∈ Symbols (partTS(p)) ∪ Symbols(partFS(p)) if p ∈ ifPreds(S).
We may strengthen this to p ցS x (X) to mean that either x ∈ Symbols(partXS (p))
(if p ∈ ifPreds(S)), or x ∈ Symbols(bodyS(p)) (if X = T and p ∈ whilePreds(S)).
Also, if A ⊆ Symbols(S), then we say that A lies immediately below S (or equivalently,
S lies immediately above A) if A ⊆ Symbols(S) and there is no p ∈ whilePreds(S)
such that A ⊆ Symbols(bodyS(p)). In this case, if S = bodyT (q) for some linear schema
T and q ∈ whilePreds(T ), we may also say that A lies immediately below q in T .

Definition 8 (main subschemas of a linear schema) Let S be a linear schema.
The set of main subschemas of S contains S itself and the bodies of all while sub-
schemas of S.

Observe that there is exactly one main subschema of a linear schema S lying imme-
diately above a set A ⊆ Symbols (S).
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3.2 Paths through a Schema

The execution of a program defines a (possibly infinite) sequence of assignments
and predicates. Each such sequence will correspond to a path through the associated
schema. The set Πω(S) of paths through S is now given.

Definition 9 (the set alphabet(S) and the set Πω(S) of paths through S) If σ
is a word, or a set of words over an alphabet, then pre(σ) is the set of all prefixes of
(elements of) σ. If L is any set, then we write L∗ for the set of finite words over L
and Lω for the set containing both finite and infinite words over L, and we write Λ
to refer to the empty word; recall that Λ is also a particular schema.
For each schema S the alphabet of S, written alphabet(S) is defined by

alphabet(S) = A ∪ B

where

A = {y := f(x)| y := f(x); is an assignment in S},
B = {<p(x) = Z> | p(x) is a predicate expression in S, Z ∈ {T, F}}.

For any letter l ∈ alphabet(S), we define symbol(l) ∈ Symbols (S) to be f if l is
an assignment with function symbol f , and p if l is <p(x) = Z > for Z ∈ {T, F}.
The words in Π(S) ⊆ (alphabet(S))∗ are formed by concatenation from the words of
subschemas as follows:

For Λ,

Π(Λ) = {Λ}.

For assignments,

Π(y := f(x); ) = {y := f(x)}.

For sequences, Π(S1S2 . . . Sr) = Π(S1) . . .Π(Sr).

For if schemas, Π( if p(x) then {T1} else {T2}) is the set of all concatenations of
<p(x) = T> with a word in Π(T1) and all concatenations of <p(x) = F> with a
word in Π(T2).

For while schemas, Π( while q(y) do {T}) is the set of all words of the form

[<q(y) = T> Π(T )]∗ <q(y) = F>

where [<q(y) = T > Π(T )]∗ denotes a finite sequence of words which are the
concatenation of <q(y) = T> with a word from Π(T ).
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We define the set Πω(S) of paths through S as

Πω(S) = Π(S) ∪ {σ ∈ (alphabet(S))ω − (alphabet(S))∗| pre(σ) − {σ} ⊆ pre(Π(S))}.

When refering to a linear schema S, we will sometimes omit the reference to refvecS(p)
for p ∈ Preds(S) when denoting elements of alphabet(S); that is, we will write
<p = Z> to refer to <p(x) = Z>. Since the schema S is linear, this is unambiguous.

Definition 10 (Paths passing through a Symbol) We say that a path σ ∈ Πω(S)
passes through a function symbol f (or a predicate p) if it contains an assignment
with function symbol f (or <p(x) = Z> for Z ∈ {T, F}). We may strengthen this by
saying that σ passes through an element l ∈ alphabet(S) if l occurs in σ.

3.3 Semantics of Structured Schemas

Given a schema S ∈ Sch(F ,P,V) and a domain D, an initial state d ∈ State(V, D)
with d 6= ⊥ and an interpretation i ∈ Int(F ,P, D) we now define the final state
M[[S]]id ∈ State(V, D) and the associated path πS(i, d) ∈ Πω(S).

Definition 11 (The Schema schema(σ)) Given a word σ ∈ (alphabet(S))∗, the
predicate-free schema schema(σ) consists of all the assignments along σ in the same
order as in σ; and schema(σ) = Λ if σ has no assignments.

Lemma 12 Let S be a schema.

(1) If σ ∈ pre(Π(S)), the set {l ∈ alphabet(S)| σl ∈ pre(Π(S))} is one of the follow-
ing; the empty set, a singleton containing an assignment, or a pair
{<p(x) = T>, <p(x) = F>} where p ∈ Preds(S).

(2) An element of Π(S) cannot be a strict prefix of another.

Proof. Both assertions follow by induction on |S|. �

Lemma 12 reflects the fact that at any point in the execution of a program, there is
never more than one ‘next step’ which may be taken.

Definition 13 (The Semantics of Predicate-free Schemas) Given a state d 6=
⊥, the final state M[[S]]id and associated path πS(i, d) ∈ Πω(S) of a schema S are
defined as follows:

For Λ,
M[[Λ]]id = d
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and

πΛ(i, d) = Λ.

For assignments,

M[[y := f(x);]]id(v) =







d(v) if v 6= y,

f i(d(x)) if v = y

(where d(x1, . . . , xr) is defined to be the tuple (d(x1), . . . , d(xr)))
and

πy := f(x);(i, d) = y := f(x),

and for sequences S1S2 of predicate-free schemas,

M[[S1S2]]
i
d = M[[S2]]

i
M[[S1]]i

d

and

πS1S2
(i, d) = πS1

(i, d)πS2
(i,M[[S1]]

i
d).

This uniquely defines M[[S]]id and πS(i, d) if S is predicate-free.

In order to give the semantics of a general schema S, first the path, πS(i, d), of S with
respect to interpretation, i, and initial state d is defined.

Definition 14 (The path πS(i, d)) Given a schema S, an interpretation i, and a
state, d 6= ⊥, the path πS(i, d) ∈ Πω(S) is defined by the following condition; for all
σ <p(x) = X> ∈ pre(πS(i, d)), the equality pi(M[[schema(σ)]]id(x)) = X holds.

In other words, the path πS(i, d) has the following property; if a predicate expression
p(x) along πS(i, d) is evaluated with respect to the predicate-free schema consisting
of the sequence of assignments preceding that predicate in πS(i, d), then the value of
the resulting predicate term given by i ‘agrees’ with the value given in πS(i, d).

By Lemma 12, this defines the path πS(i, d) ∈ Πω(S) uniquely.

Definition 15 (the semantics of arbitrary schemas) If πS(i, d) is finite, we de-
fine

M[[S]]id = M[[schema(πS(i, d))]]id

(which is already defined, since schema(πS(i, d)) is predicate-free) otherwise πS(i, d)
is infinite and we define M[[S]]id = ⊥. In this last case we may say that M[[S]]id is
not terminating. For convenience, if S is predicate-free and d : V → Term(F ,V) is
a state then we define unambiguously M[[S]]d = M[[S]]id; that is, we assume that the
interpretation i is Herbrand if Term(F ,V) is the domain for which d is defined. For
schemas S, T and interpretations i and j we write M[[S]]id(ω) = M[[T ]]jd(ω) to mean
M[[S]]id = ⊥ ⇐⇒ M[[T ]]jd = ⊥.
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Observe that M[[S1S2]]
i
d = M[[S2]]

i
M[[S1]]id

and

πS1S2
(i, d) = πS1

(i, d)πS2
(i,M[[S1]]

i
d)

hold for all schemas (not just predicate-free ones).

Definition 16 (Termination from the natural state e) If M[[S]]ie 6= ⊥, then we
say that i is a terminating interpretation for S.

Definition 17 (Changing an interpretation) Given an interpretation i and X ∈
{T, F} and p ∈ P, the Herbrand interpretation i(p = X) is given by

qi(p=X)(t) =







qi(t) q 6= p

X q = p

for every vector of terms t of the appropriate length. We generalise this by defining
the interpretation i(p(t) = X) to mean the interpretation j satisfying pj(t) = X and
qj(t′) = qi(t′) for all predicate terms q(t′) 6= p(t).

Definition 18 (prefixes of paths passing through predicate terms) Let S be
a linear schema, let d be a state and let µ ∈ pre(Π(S)). We say that µ passes through
a predicate term p(t) starting at d if µ has a prefix µ′ ending in <p = Y > for
y ∈ {T, F} such that M[[schema(µ′)]]d(refvecS(p)) = t holds. We say that p(t) = Y
is a consequence of µ starting at d. We may omit the phrase ‘starting at d’ if d = e,
or if the intended state seems obvious.

Definition 19 (u-equivalence of Schemas) Given any u ∈ V ∪ {ω}, we say that
schemas S, T ∈ Sch(F ,P,V) are u-equivalent, written S ∼=u T, if for every domain
D and state d : V → D and every i ∈ Int(F ,P, D), the following holds; either
u ∈ V ∧ ⊥ ∈ {M[[S]]id,M[[T ]]id}, or

M[[S]]id(u) = M[[T ]]id(u).

If V ⊆ V ∪ {ω}, we write S ∼=V T to mean S ∼=u T ∀u ∈ V and we write S ∼= T to
mean S ∼=V∪{ω} T .

In Subsection 2.3 the definitions of free and liberal schemas were sketched for un-
structured schemas. Here we give a formal definition of these terms for the class of
structured schemas.

Definition 20 (free and liberal schemas) Let S be a schema.

• If for every σ ∈ pre(Π(S)) there is a Herbrand interpretation i such that σ ∈
pre(πS(i, e)), then S is said to be free.

• If for every Herbrand interpretation i and any prefix µ v := f(a) ν w := g(b) ∈
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pre(πS(i, e)), we have

M[[schema(µ v := f(a))]]e(v) 6= M[[schema(µ v := f(a) νw := g(b))]]e(w),

then S is said to be liberal. (If f 6= g then of course this condition is trivially
satisfied.)

Thus a schema S is said to be free if for every path through S, there is a Herbrand
interpretation which follows it starting at the natural state e, and a schema S is said
to be liberal if given any path through S passing through two assignments and a Her-
brand interpretation which follows it starting at the natural state e, the assignments
give distinct values to the variables to which they assign.

Observe that if a schema S is free, and

µ <p(x) = X> µ′ <p(y) = Y> ∈ pre(πS(i, e))

for some Herbrand interpretation i, then

M[[schema(µ)]]e(x) 6= M[[schema(µµ′)]]e(y)

holds, since otherwise there would be no Herbrand interpretation whose path (for e)
has the prefix µ <p(x) = X> µ′ <p(y) = ¬X>. Thus a path through a free schema
cannot pass twice (starting at e) through the same predicate term.

We will later give a syntactic condition which characterises being liberal and free for
linear schemas in the next subsection (Theorem 26).

We will refer to a schema which is liberal, free and linear as an LFL schema.

The following theorem, which is a restatement of [1, Theorem 4-1], ensures that we
only need to consider Herbrand interpretations.

Theorem 21 Let S be a schema and let D be a domain.

• For any state d : V → D and any interpretation i ∈ Int(F ,P, D), there exists a
Herbrand interpretation j such that πS(j, e) = πS(i, d).

• If T is a schema, u ∈ V ∪ {ω} and for all Herbrand interpretations j we have
M[[S]]je(u) = M[[T ]]je(u) (provided both sides terminate if u ∈ V), then S ∼=u T.

Throughout the remainder of the paper, all interpretations will be assumed to be
Herbrand.

Clearly the relation ∼=ω is an equivalence relation on the set of schemas. Proposition
22 shows that the relation ∼=v for variable v also is on the class of free schemas.

Proposition 22 (transitivity of ∼=v for free schemas) Let v ∈ V; then the rela-
tion ∼=v is an equivalence relation when restricted to the class of free schemas.
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Proof. Only transitivity is at issue. Suppose S ′ ∼=v S ′′ and S ′′ ∼=v S ′′′ hold for free
schemas S ′, S ′′, S ′′′. Let i be an interpretation and assume that

⊥ /∈ {M[[S ′]]ie,M[[S ′′′]]ie}

holds. Let the interpretation j map every predicate term p(t) to F unless πS′(i, e) or
πS′′′(i, e) passes through p(t), in which case let pj(t) = pi(t). Thus M[[S ′]]ie = M[[S ′]]je
and M[[S ′′′]]ie = M[[S ′′′]]je hold and j maps finitely many predicate terms to T, hence
M[[S ′′]]je 6= ⊥ holds. Thus

M[[S ′]]je(v) = M[[S ′′]]je(v) = M[[S ′′′]]je(v)

holds, giving the result. �

Proposition 22 is false for the set of all schemas. To see this, consider the three schemas

S ′ = if p(u) then v := f1();
else v := g();

S ′′ = while p(u) do Λ;
v := g();

S ′′′ = if p(u) then v := f2();
else v := g();

of which S ′′ is not free. Clearly S ′ ∼=v S ′′ and S ′′ ∼=v S ′′′ hold, but not S ′ ∼=v S ′′′.

3.4 Data dependence Relations

Definition 23 (segments of a schema and of segments) Let S be a schema and
let µ ∈ alphabet(S)∗. We say that µ is a
segment (in S) if there are words µ1, µ2 such that µ1µµ2 ∈ Π(S). If µ, σ are segments
in S, then we say that µ is a segment of σ in S if we can write σ = µ1µµ2.
We say that a segment µ starts (ends) at x ∈ Symbols(S) if x̃ ∈ alphabet(S) is the
first (last) letter of µ, with x = symbol(x̃).

Definition 24 (the  S ‘data dependence’ relation) Let S be a linear schema.
We write f  S x for f ∈ Funcs(S), x ∈ Symbols(S) if there is a segment f̃σx̃ in
S such that f̃ is an assignment to f and x̃ ∈ alphabet(S) satisfies symbol(x̃) = x,
and there is no assignment to the variable assignS(f) along σ. We call f̃σx̃ an fx-
segment in this case. We generalise this by defining f  S v for f ∈ Funcs(S), v ∈ V
if f  S w := g(v); g holds for any linear schema S w := g(v);, in which case we define
an fv-segment in S to be any segment σ of S such that σ w := g(v) is a fg-segment
in the schema S w := g(v);. Lastly, we write v  S x for v ∈ V, x ∈ Symbols (S) if
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h  v := h(); S x holds for any linear schema v := h(); S, in which case we define a vx-
segment in S to be any σ ∈ pre(Π(S)) such that v := h() σ is an hx-segment in the
schema v :=h(); S.
In all cases, we may strengthen the relation x S y by writing x S y (n) for n ∈ N

if either y ∈ V or the nth component of refvecS(y) is x or assignS(x).

Thus f  S x holds for f ∈ Funcs(S), x ∈ Symbols (S) if and only if there exists a
path in S along which a (predicate) term x(t) such that t has a component f(t′) is
created; and we may define an fx-segment to be any segment in S which ‘witnesses’
such a creation. Similar characterisations can be given for the statements f  S v and
v  S x for v ∈ V.
As an example, if T is the linear schema of Figure 3, the relations v  T q, v  T k,
k  T k (but not k  T v), w  T p, h T f , h T u, f  T v, and g  T v hold.

Definition 25 extends the notion of a µ-segment to cases in which µ has any length
greater than one.

Definition 25 (µ-segments and µ-prefixes) Let S be a linear schema and let
x1, . . . , xm ∈ F ∪P ∪V, for m ≥ 2. Assume that xi ∈ P ⇒ i = m and xi+1, . . . , xm−1

are not variables, and at least one xi lies in F ∪P. Then an x1 . . . xm-segment of S is
a segment ρ = x̃1ρ1x̃2ρ2 . . . ρm−1x̃m in S such that each x̃iρix̃i+1 is an xixi+1-segment.
Also, we call any ρ ∈ pre(Π(S)) a µ-prefix in S if either ρ = ρ′ρ′′ for some µ-segment
ρ′′, or µ ∈ F ∪ P and the last letter of ρ has symbol µ.

Observe that if S is a linear schema, g ∈ F and G ∈ F∗, and g lies immediately below
S, then there can be no gGg-segment in S.

As mentioned in the introduction, it was proved in [3] that it is decidable whether a
schema is liberal, or liberal and free. Theorem 26 gives the essential result for linear
schemas.

Theorem 26 (syntactic condition for being liberal and free)
Let S be a linear schema. Then S is both liberal and free if and only if for every
segment x̃µỹ in S with x̃, ỹ ∈ alphabet(S), symbol(x̃) = symbol(ỹ) and such that the
same symbol does not occur more than once in x̃µ or µỹ, then the segment x̃µ contains
an assignment to a variable referenced by ỹ.
In particular, it is decidable whether a linear schema is both liberal and free.

Proof [3]. Assume that S is both liberal and free. Then for any segment x̃µỹ satisfying
the conditions given, there is a prefix Θ and an interpretation i such that Θx̃µỹ ∈
pre(πS(i, e)), and distinct (predicate) terms are defined when x̃ and ỹ are reached,
thus proving the condition.
To prove sufficiency, first observe that the ‘non-repeating’ condition on the letters of
the segments x̃µ and µỹ may be ignored, since segments that begin and end with letters
having the same symbol can be removed from within x̃µ or µỹ until it is satisfied.
Consider the set of prefixes of Π(S) of the form Θx̃µỹ with symbol(x̃) = symbol(ỹ) such
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that x̃µỹ satisfies the condition given. By induction on the length of such prefixes, it
can be shown that every assignment encountered along such a prefix defines a different
term (for initial state e), and the result follows immediately from this.
Since there are finitely many segments in S which contain no repeated symbols except
at the endpoints, and these can be enumerated, the decidability of liberality and
freeness for the set of linear schemas follows easily. �

Theorem 26 can easily be generalised to apply to arbitrary unstructured schemas; we
state it in restricted form in order to simplify the notation used.

Lemma 27 (converting f  S v to f  S p) Let v ∈ V and let S be a linear schema.
Let H be the linear schema if p(v) then v := g(); else v :=h();. Suppose the schema SH
is linear. If f  S v holds then f  SH p holds. Also, if T is a linear schema such that
TH is linear then S ∼=u T ⇒ SH ∼=u TH holds for each u ∈ {v, ω}. �

Definition 28 (F -terms and data dependence in terms) Let F ∈ F∗ ∪ VF∗.
We define F -terms inductively. The variable v is a v-term. If at least one of the terms
t1, . . . , tn is an F -term, then the vector term t = (t1, . . . , tn) is an F -term and the
term g(t) is an Fg-term. Any FF ′-term is also an F ′-term.
If a term t contains a subterm g(t1, . . . , tn) and some ti is an x-term for x ∈ V ∪ F ,
then we may write x t g or x t g (i). We also write x p(t′) g or x t′ g (for any
p ∈ P) if t is one of the components of t′.

3.5 Other Relations between Schema Symbols

Definition 29 gives four relations which strengthen the data dependence relation.

Definition 29 (the outif, outwhile, thru and back relations) Let S be a linear
schema and let x ∈ F ∪V and y ∈ F ∪P ∪V. Let p ∈ P. Assume that x S y holds.
Then we make the following definitions.

• If p ∈ whilePreds(S) and x ∈ Funcs(bodyS(p)) and
y /∈ Symbols (bodyS(p)), then we write outwhileS(p, x, y). (Note that
outwhileS(p, x, p) may hold). If p ∈ whilePreds(S) and both x and y are symbols in
bodyS(p) but ¬(x  bodyS(p) y) holds (a backward data dependence) then we write
backS(p, x, y).

• If Y ∈ {T, F} and p ∈ ifPreds(S) and x ∈ Funcs(partYS (p)) and ¬(x  partY
S

(p)

y)∨(y ∈ V) holds, then we write outif S(p, Y, x, y). If Y ∈ {T, F} and p ∈ ifPreds(S)
and neither x nor y is a symbol in either of the schemas partTS(p) or partFS(p) and
every xy-segment contains the letter <p = Y >, then we write thruS(p, Y, x, y).
(Note that thruS(p, Y, x, p) is always false.)
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while p(v) do

{

u := g(v);

v := f();

}

Fig. 4. backS(p, f, g) holds here

As an example, backS(p, f, g) holds if S is the linear schema in Figure 4.

Definition 30 (q-competing function symbols and variables) Let S be a lin-
ear schema and assume that f  S x (n) and g  S x (n) for f, g, x ∈ Symbols (S) ∪ V
and n ∈ N. Let q ∈ ifPreds(S). We say that f and g are q-competing for x in
S if for {X, Y } = {T, F}, we have both outif S(q, X, f, x) ∨ thruS(q, X, f, x) and
outif S(q, Y, g, x) ∨ thruS(q, Y, g, x).

Thus f and g are p-competing for v in the schemas of Figures 1 and 5. Proposition
31 will be used in later sections.

Proposition 31 (Connection between outif S and thruS) Let S be a linear
schema and assume that thruS(p, Y, x, y) holds for some p ∈ ifPreds(S), Y ∈ {T, F}
and x, y ∈ Symbols (S) ∪ V. Assume that x  S y (n) holds for n ∈ N. Then every
path in Π(part¬Y

S (p)) passes through some f ′ ∈ F satisfying outif S(p,¬Y, f ′, y) and
f ′
 S y (n).

Proof. We may assume that x ∈ F holds, otherwise we may replace S with a linear
schema x := f(); S. Since thruS(p, Y, x, y) holds, there is an xy-segment γ = µ <p =
Y > µ′µ′′ in S with µ′ ∈ Π(partYS (p))) and µ′′ 6= Λ. We may assume that p occurs
only once in the segment γ; otherwise we could delete a segment from within γ. Let
σ ∈ Π(part¬Y

S (p)). The segment µ <p = ¬Y > σµ′′ does not enter the Y -part of p
and so is not an xy-segment, by the definition of thruS(p, Y, x, y). Thus the variable
assigned by x is ‘killed’ along σ, giving the result. �

Definition 32 (The aboveS function) Let S be a linear schema and let x be a

u :=h();

v := f(u);

if p(w) then Λ

else v := g();

Fig. 5. thruS(p,T, f, v) ∧ outif S(p,F, g, v) holds here
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symbol in S. If x lies immediately below S, then we define aboveS(x) = x; otherwise we
define aboveS(x) to be the while predicate lying immediately below S and containing
x in its body.

Proposition 33 (Connection between aboveS and backS relations) Let S be a
linear schema and assume that backS(p, f, x) holds for some f ∈ F , x ∈ Symbols (S)
and p ∈ whilePreds(S). If f 6= x then abovebodyS(p)(f) 6= abovebodyS(p)(x) holds.

Proof. Since f 6= x holds, abovebodyS(p)(f) = abovebodyS(p)(x) implies

abovebodyS(p)(f) = q ∈ whilePreds(bodyS(p))

holds. Thus f  S(q) x and hence f  bodyS(p) x holds, contradicting
backS(p, f, x). �

Definition 34 (The <<S relation) Let S be a linear schema and let

{x, y} ⊆ Symbols (S).

Assume that S lies immediately above the set {x, y}. We define x <<S y if aboveS(x) 6=
aboveS(y) and there is a segment in S which begins at aboveS(x) and ends at aboveS(y).

Observe the following; if x <<S y then every segment in S which begins at x and
ends at y passes through every occurrence of x before any occurrence of y, and x
and y do not lie in opposite parts of any if predicate. Also, <<S is transitive; and
x <<S y ∧ y <<S x never holds, since otherwise S would contain a while predicate
containing both aboveS(x) and aboveS(y) in its body.

3.6 The NS and InvS sets

The symbol and variable sets of Definition 35 are purely syntactically defined, and
contain all the symbols and (initial) variables which can influence the final value of a
variable. This is stated precisely in Theorem 42.

Definition 35 (symbols needed by variables) Let S be a linear schema and let
x ∈ {ω}∪V ∪ Symbols (S). Then we define the set NS(x) to be the minimal subset of
Symbols (S) satisfying the following closure conditions; if f ∈ F , y ∈ {x}∪NS(x) and
f  S y then f ∈ NS(x); and if x = ω then whilePreds(S) ⊆ NS(x); and if p ցS y
for y ∈ NS(x) then p ∈ NS(x).
We also define InvS(x) ⊆ V to contain all variables v satisfying v  S v if v = x ∈ V
or v  S y for some y ∈ NS(x).
We generalise this by defining NS(V ) = ∪u∈V NS(u) for a set V , and similarly with
InvS.
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Note that NS(y) is a set of symbols of S, whereas InvS(y) is a subset of V.

It can easily be proved that if v ∈ V and a linear schema S = AB, then InvS(v) =
InvA(InvB(v)).

Observe that if any of the relations given in Definition 29 hold, and y ∈ NS(u) for
some u ∈ V ∪ {ω}, then x ∈ NS(u) holds; in the case that thruS(p, Y, x, y) holds, this
follows from Proposition 31.

Definition 36 (dependence sequences, depnumS (y, x)) Let S be a linear schema
and assume that y ∈ NS(x) ∪ InvS(x). Then an x-dependence sequence for y in S
is a word w ∈ (P ∪ F ∪ V)∗ − V beginning in y and ending in x (or in a element
of whilePreds(S) if x = ω) which ‘witnesses’ this fact; that is, only the first and last
letters of w may be variables; also, if f ∈ F is in w, and z is the next letter in w after
f , then f  S z; if p ∈ P is in w, and z is the next letter in w after p, then p ցS z.
We define depnumS (y, x) ∈ N to be the minimal length of any x-dependence sequence
for y in S.

Observe that if v ∈ V and x ∈ NS(v) ∪ InvS(v) then depnumS (x, v) ≥ 2 holds, since
v is not a dependence sequence.
Clearly if w is an x-dependence sequence for y of minimal length, then w contains no
repeated letters in P∪F . Observe also that if w is minimal for S then ¬(p ցS z) holds
for any p in w and any letter z occurring after p in w, unless z occurs immediately
after p.

Proposition 37 (form of dependence sequences) Let S be a linear schema and
let u ∈ V ∪ {ω} and x ∈ NS(u) ∪ InvS(u).
If depnumS (x, u) ≥ 2, then there exists y ∈ NS(u) ∪ {u} such that either x S y or
x ցS y, and y = u ∨ dep(y, u) = depnumS (x, u) − 1 holds.
Furthermore, if also depnumS (x, u) ≥ 3 holds, then this y ∈ Symbols(S), and if
x ցS y (Y ) holds then y  S z holds for some z such that (z = u ∈ V) ∨ (z ∈
NS(u) ∧ depnumS (z, u) = depnumS (x, u) − 2 ∧ ¬(x ցS z)).

Proof. This follows immediately from the definition of a minimal-length u-dependence
sequence for x in S. �

3.7 Definition of u-similar and u-congruent linear schemas

Definition 38 (u-similar and u-congruent linear schemas) Let S, T be linear
schemas and let u ∈ {ω} ∪ V. Then S similu T (S is u-similar to T ) if and only if the
following hold:

(1) NS(u) = NT (u);
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(2) NS(u) ∩ ifPreds(S) = NT (u) ∩ ifPreds(T );
(3) NS(u) ∩ whilePreds(S) = NT (u) ∩ whilePreds(T );
(4) f  S x (n)∧x ∈ NS(u) ⇐⇒ f  T x (n)∧x ∈ NT (u), for all f ∈ F and n ≥ 1;
(5) f  S u ⇐⇒ f  T u if u ∈ V and f ∈ F ;
(6) v  S x (n) ⇐⇒ v  T x (n) for all v ∈ V and x ∈ NS(u) and n ≥ 1;
(7) q ցS p (Z) ⇐⇒ q ցT p (Z) if u = ω and p ∈ whilePreds(S) and q is any

predicate and Z ∈ {T, F};
(8) Symbols (bodyS(p)) ∩NS(u) = Symbols (bodyT (p)) ∩NT (u) if p ∈ whilePreds(S);
(9) backS(p, f, x) ∧ x ∈ NS(u) ⇐⇒ backT (p, f, x) ∧ x ∈ NT (u);

(10) If q ∈ ifPreds(S) and Z ∈ {T, F} and f ∈ F and x ∈ NS(u) ∪ (V ∩ {u}) then

outif S(q, Z, f, x) ∨ thruS(q, Z, f, x) ⇐⇒ outif T (q, Z, f, x) ∨ thruT (q, Z, f, x);

(11) If f, f ′ ∈ Funcs(S) and f, f ′
 S x (r) for x ∈ NS(u)∪ ({u}∩V), and r ∈ N, and

S̄, T̄ are the main subschemas of S and T respectively lying immediately above
{f, f ′}, then either ¬(f <<S̄ f ′ ∧ f ′ <<T̄ f) holds, or there exists q ∈ ifPreds(S)
such that f and f ′ are q-competing for x in S;

(12) If p ∈ whilePreds(S), f ∈ F and f  S x ∧ x ∈ NS(u) and v = assignS(f) and
w = assignT (f), then

f  bodyS(p) v ∧ v  bodyS(p) x

⇐⇒

f  bodyT (p) w ∧ w  bodyT (p) x

holds.
(13) If p ∈ whilePreds(S), q ∈ ifPreds(S), f ∈ Funcs(S), x ∈ NS(u), Z ∈ {T, F} and

f  S x, with v = assignS(f) and w = assignT (f) and v  bodyS(p) x, then

outif bodyS(p)(q, Z, f, v) ∨ thrubodyS(p)(q, Z, f, v)

⇐⇒

outif bodyT (p)(q, Z, f, w) ∨ thrubodyT (p)(q, Z, f, w)

holds.

If S similu T and also refvecS(x) = refvecT (x) for all x ∈ NS(u) and assignS(f) =
assignT (f) for all f ∈ NS(u)∩F , then we say that S and T are u-congruent, written
Scongu T .

We also write S similV T to mean that S similu T for all u ∈ V , and S simil T to mean
that S similV∪{ω} T holds. Also ScongV T has a similar meaning.

Observe that the two linear predicate-free schemas

u := f();

v := g(u);

and
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u′ := f();

v := g(u′);

are v-similar but not v-congruent if u 6= u′; thus congruence is a stronger condition
than similarity.

There is some redundancy in the conditions of S similu T ; Condition (1) can in fact be
proved using Conditions (2), (3),(4),(8) and (10) using Proposition 31. Also Condition
(12) is (we conjecture) a consequence of the others, but it seems convenient to state the
definition of S similu T in the form given. It is also worth mentioning that if Condition
(5) is broadened to allow f ∈ V, then the definition of S similu T is unchanged, but
to make this change in the definition of Definition 38 would make the induction proof
of Lemma 51 more difficult.

Theorem 39 (S similu T is decidable in polynomial time) Given linear schemas
S and T and u ∈ V ∪{ω}, it is decidable in polynomial time whether S similu T holds.

Proof. Given a linear schema S, encoded as indicated in Definition 4, with the braces
{ }, the truth of the relations p ցS x (Z) for each p ∈ Preds(S), x ∈ Symbols (S),
Z ∈ {T, F} can be established in polynomial time. Given two elements v, w ∈ alphabet(S),
with symbols v′, w′, we can decide in polynomial time whether w occurs immediately
after v in any word in Π(S), since this holds if and only if either w′ occurs after v′ in
S without there being any other symbol between them, and p ցS v′ ⇐⇒ p ցS w′

for all p ∈ whilePreds(S), or v′ ∈ whilePreds(S) and v′ lies immediately above w′ and
there are no symbols occurring after v′ in S before the closing brace } defined by v′.
Thus we can construct in polynomial time a directed graph GS, whose vertices are the
elements of alphabet(S) and such that there is an edge from vertex v to w in the graph
GS if and only if w occurs immediately after v in a word in Π(S). Given f ∈ Funcs(S)
and x ∈ Symbols (S), we can establish whether f  S x holds by deleting all vertices
in GS that are assignments to assignS(f) except the one with function symbol f or x,
if x ∈ F , and edges adjacent to deleted vertices, and establishing whether the letter
containing x is reachable from the f -assignment in the resulting directed graph. This
latter problem is well-known to be polynomial-time decidable in the size of GS. The
values of n for which f  S x (n) also holds can also be easily established, as can the
truth of the assertions v  S x (n) for v ∈ V and f  S u. Also, the truth of the rela-
tions above and << for appropriate arguments can be decided in polynomial time by
studying S. Having obtained this information, we can test the truth of the relations
back , outif , thru (and hence the q-competing condition) for appropriate arguments.
By comparing this information with that obtained from T and the graph GT , it can
be decided in polynomial time whether S and T satisfy S similu T . �

Lemma 40 (Replacing similar schemas by congruent schemas) Let
u ∈ V ∪ {ω} and let S, T be u-similar linear schemas. Then there are linear schemas
S ′, T ′ which are u-equivalent and u-similar to S and T respectively and such that
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S ′congu T ′.

Proof. Let x ∈ NS(u) and r ≤ arity(x) and assume that the rth component of
refvecS(x) is v, whereas the rth component of refvecT (x) is w 6= v. Let

Γassign, Γref(n) ⊆ NS(u)

for n ∈ N be the minimal sets satisfying the following two conditions; x ∈ Γref(r), and
if g  S y (r′) for y ∈ NS(u), r′ ≤ arity(y) and assignS(g) = v, then g ∈ Γassign ⇐⇒

y ∈ Γref(r
′) holds. Let v′ be a variable not occurring in either S or T . Let Ŝ be the

schema obtained from S by setting assignS′(h) = v′ for all h ∈ Γassign and changing
the sth component of refvecS(z) from v to v′ for all z ∈ Γref(s). We similarly replace

‘corresponding’ occurrences of w in T by v′ to get T̂ . Clearly Ŝ similu S and Ŝ ∼=u S
holds, and the same relations hold for T and T̂ . We repeat this process for every
x ∈ NS(u). The resulting schemas satisfy the conditions stated. �

3.8 Slices of schemas

An important special case of the equivalence problem for schemas S, T is that in which
T is a slice of S.

Definition 41 A slice of a structured schema S may be obtained recursively by the
following rules;

• if S = S1S2S3 then S1S3, S1S2 and S2S3 are slices of S;
• if T ′ is a slice of T then while p(u) do T ′ is a slice of while p(u) do T ;
• if T ′ is a slice of T then the if schema if q(u) then S else T ′ is a slice of

if q(u) then S else T (the true and false parts may be interchanged in this example);
• a slice of a slice of S is itself a slice of S.

The following facts are easily proved. All slices of a linear schema are also linear. If a
set Σ ⊆ Symbols(S) (for linear S) satisfies (x ∈ Σ ∧ p ցS x) ⇒ p ∈ Σ, then there is
a unique slice T of S satisfying Symbols(T ) = Σ; the slice T can be obtained from S
by successively removing all assignments whose function symbols do not lie in Σ, and
every if and while subschema of S whose guard does not lie in Σ.
A special case is given by Σ = NS(V ) for V ⊆ V ∪ {ω}. In this case every slice T of
S containing all symbols in NS(V ) satisfies InvT (V ) = InvS(V ) and ScongV T , since
deletion from S of symbols not lying in NS(V ) does not affect the schema properties
defining these statements. We will show in Part (2) of Theorem 42 that S ∼=V T also
holds.

A slice of an LFL schema need not be free or liberal; for example, the schema
while p(v) do Λ, which is not free, is a slice of the LFL schema below;
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while p(v) do

{

u :=h(u);

w := k(u);

v := g(v);

}

Also, deleting the assignment u :=h(u); gives a schema which is free but not liberal.
However the slice of an LFL schema S which contains precisely the symbols in NS(V )
for any V ⊆ V is itself LFL; this follows from Theorem 26 and the ‘backward data
dependence’ property of NS(V ).

Theorem 42 Let S be a (not necessarily free or liberal) linear schema and let T be
a slice of S. Let u ∈ V ∪ {ω}, let i, j be interpretations differing only on predicates
not lying in NS(u), and let c, d be states such that c(v) = d(v) for all v ∈ InvS(u).
Assume that T contains every symbol of NS(u).

(1) If Symbols (T ) = NS(u), then M[[S]]ic 6= ⊥ ⇒ M[[T ]]jd 6= ⊥.
(2) If u ∈ V and M[[S]]ic and M[[T ]]jd both terminate, then M[[S]]ic(u) = M[[T ]]jd(u);

and if u = ω then M[[S]]ic 6= ⊥ ⇐⇒ M[[T ]]jd 6= ⊥.

In particular, S ∼=u T holds.

Proof. Given any µ ∈ (alphabet(S))ω, we define ∆(µ) to be the word obtained by
deleting every letter in µ whose symbol does not lie in NS(u). Let T ′ be the slice
of T (which hence is also a slice of S) that satisfies Symbols (T ′) = NS(u). Observe
that NS(u) = NT (u) = NT ′(u) and InvS(u) = InvT (u) = InvT ′(u); and ∆(Π(S)) =
Π(T ′) = ∆(Π(T )) follows easily from the definition of a slice, using induction on |S|.
Assume that u ∈ V ⇒ πS(i, c) ∈ Π(S) holds. We will show that

∆(πT (j, d)) ∈ pre(∆(πS(i, c)))

holds. Suppose that this is false; thus we may write πS(i, c) = σρ such that

∆(σ) l ∈ pre(∆(πT (j, d))) − pre(∆(πS(i, e)))

for a letter l ∈ alphabet(T ′) and a finite prefix σ. We will show that l is the first
letter of ρ whose symbol is in NS(u), proving ∆(σ) l ∈ pre(∆(πS(i, c))) and so giv-
ing a contradiction. If ρ does not contain any letter whose symbol lies in NS(u),
and is finite, then ∆(σ) = ∆(πS(i, c)) ∈ ∆(Π(S)) = Π(T ′), contradicting Part
(2) of Lemma 12 applied to T ′. If ρ does not contain such a letter, but is infi-
nite, then ρ contains a while predicate, but no element of NS(u). But this im-
plies u ∈ V, contradicting the finiteness of πS(i, c). Thus we may write ρ = ρ1l

′ρ2,
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for a letter l′ whose symbol is in NS(u), unlike those of the letters in ρ1, and so
∆(σ)l′ ∈ ∆(pre(Π(S))) = ∆(pre(Π(T ))) = Π(T ′); hence by Part (1) of Lemma
12 applied to T ′ we must have l = <p = X > and l′ = <p = X ′ >, for p ∈
NS(u). Thus M[[schema(σρ1)]]c(refvecS(p)) = M[[schema(∆(σ))]]c(refvecS(p)) =
M[[schema(∆(σ))]]d(refvecS(p)) using the conditions on c and d and the fact that
σρ1l

′ and ∆(σl′) contain the same set of Gp-segments for G ∈ VF∗.
Clearly πT (j, d) has a prefix τl with ∆(τ) = ∆(σρ1) = ∆(σ). Since p ∈ NS(u) = NT (u)
holds, τ and ∆(τ) contain the same set of Gp-segments for G ∈ VF∗, and so

M[[schema(τ)]]d(refvecS(p)) = M[[schema(∆(τ))]]d(refvecT (p)),

hence

X ′ = pi(M[[schema(σρ1)]]c(refvecS(p))) = pj(M[[schema(τ)]]d(refvecT (p))) = X

and so l = l′ holds, giving the required contradiction. Thus we have shown ∆(πT (j, d)) ∈
pre(∆(πS(i, c))).
Observe that if Symbols (T ) = NS(u) then T ′ = T , and so ∆(µ) = µ for all µ ∈ Πω(T ),
thus proving (1).
We now show (2). By interchanging S and T and using a similar argument to that
used above, we can show that if u ∈ V ⇒ πT (j, d) ∈ Π(T ) holds then ∆(πS(i, c)) ∈
pre(∆(πT (j, d))) follows; thus if u ∈ V ⇒ (πT (j, d) ∈ Π(T ) ∧ πS(i, c) ∈ Π(S)) holds
then

∆(πT (j, d)) = ∆(πS(i, c))

follows. Thus if u ∈ V and πT (j, d)) and πS(i, c) are both finite then πS(i, c) and
πT (j, d) are Gu-segments for the same values of G ∈ VF∗, hence

M[[schema(πS(i, c))]]c(u) = M[[schema(πT (j, d))]]d(u)

holds, proving M[[S]]ic(u) = M[[T ]]jd(u). If u = ω, then ∆ does not delete while predi-
cate letters, and so πS(i, e) and πT (j, d) are both finite or both infinite; thus we have
proved Part (2).
Thus we have shown S ∼=u T . �

Part (1) of Theorem 42 may fail for a slice T whose symbol set strictly contains NS(u);
for example, if S is

v = f();
while p(v) do Λ

and T is the slice

while p(v) do Λ

for a variable v 6= u. If the interpretation i maps every predicate term p(t) to T unless
t = f() then M[[S]]ie terminates whereas M[[T ]]ie does not.
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4 u-similarity implies u-equivalence

Theorem 55 is the main result of this section. The proof of this theorem procedes along
the following lines. By Part (2) of Theorem 42, we may assume that u-similar linear
schemas S and T contain only the symbols in NS(u), since replacing schemas S and
T by their respective slices containing only these symbols preserves u-similarity and
congruence. We will prove that we may also assume that S and T are u-congruent.
We will prove that we can make a further simplifying assumption about S and T ,
namely that there are no if predicates lying immediately below S or T . In order to do
this, we have to define the schema S/(q = Z) with the ¬Z-part of q deleted, where
q ∈ ifPreds(S) and Z ∈ {T, F}. In essence, a linear schema S which has m if predicates
lying immediately below it may be thought of as a set of 2m linear schemas, one for
each choice from {T, F} for each of these if predicates. We will show that u-congruence
of S and T implies u-congruence for each of these schemas with its counterpart for
T , and that any interpretation defines paths through S and T which make the same
choice from {T, F} in S and T for each of these if predicates. Thus we need to define the
truncated schema truncS (q), which is the ‘bit’ of S occurring before the if predicate q
is reached, and prove that truncS (q) and truncT (q) are v-congruent for all variables
v referenced by q. Thus we reduce the problem to the special case in which S and T
are sequences of assignments and while schemas.

4.1 Deleting parts of if schemas

Definition 43 (deleting a part of an if schema) Let S be a linear schema and
let q ∈ P and Z ∈ {T, F}. Assume that q ∈ ifPreds(S) holds. The linear schema
S/(q = Z) is obtained by replacing the if subschema S(q) of S by partZS (q).

Proposition 44 (characterising pre(Π(S/(q = Z)))) Let S be a linear
schema. Let q ∈ ifPreds(S) and Z ∈ {T, F}. Let µ ∈ alphabet(S)∗. Then µ ∈
pre(Π(S/(q = Z))) if and only if there exists ρ ∈ pre(Π(S)) not passing through
<q = ¬Z> and such that µ is obtained from ρ by deleting all occurrences of <q = Z>.
�

Lemma 45 (relating S to S/(q = Z)) Let S be a linear schema. Let q ∈ ifPreds(S)
and Z ∈ {T, F}. Then the following hold.

(1) Let f ∈ Funcs(S) and y ∈ Symbols(S/(q = Z)) ∪ V. Then

f  S/(q=Z) y ⇐⇒ f  S y ∧ ¬(outif S(q,¬Z, f, y) ∨ thruS(q,¬Z, f, y))

holds.
(2) Let y ∈ Symbols (S/(q = Z)), Y ∈ {T, F} and p ∈ Preds(S) − {q}. Then

p ցS/(q=Z) y (Y ) ⇐⇒ p ցS y (Y ).
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(3) Let f ∈ Funcs(S) and y ∈ Symbols (S/(q = Z))∪V. Assume f  S/(q=Z) y holds.
Let p ∈ ifPreds(S) − {q} and Y ∈ {T, F}. Then

outif S(p, Y, f, y) ⇒ outif S/(q=Z)(p, Y, f, y)

and
thruS(p, Y, f, y) ⇒ thruS/(q=Z)(p, Y, f, y)

hold, and if aboveS(q) = q and aboveS(p) 6= p, then the converse statements are
true.

Proof.

(1) Assume that f  S/(q=Z) y holds. Thus ¬(q ցS f (¬Z)) and so
¬outif S(q,¬Z, f, y) holds. Let µ be an fy-prefix in S/(q = Z). By Proposition
44, there is a prefix ρ in S not passing through <q = ¬Z> such that µ is obtained
from ρ by deleting all occurrences of <q = Z>; hence ρ is an fy-prefix in S and
so f  S y ∧ ¬thruS(q,¬Z, f, y) holds.
Conversely, assume f  S y ∧ ¬(outif S(q,¬Z, f, y) ∨ thruS(q,¬Z, f, y)) holds.
By the hypotheses, y 6= q ∧ ¬(q ցS y (¬Z)) and hence ¬(q ցS f (¬Z)) holds.
Thus there is an fy-prefix ρ in S which does not pass through <q = ¬Z>. By
Proposition 44, deleting all occurrences of <q = Z> from ρ gives an fy-segment
in S/(q = Z).

(2) This follows easily from the definition of S/(q = Z).
(3) We have four cases.

• Assume outif S(p, Y, f, y) holds. Thus p ցS f (Y ) and since f ∈ Funcs(S/(q =
Z)) by the hypotheses, p ցS/(q=Z) f (Y ) by Part (2) of this Lemma; in
particular, p ∈ Symbols(S/(q = Z)). Assume that ¬outif S/(q=Z)(p, Y, f, y);
thus since f  S/(q=Z) y holds by the hypotheses, f  S/(q=Z)(p,Y ) y holds.
If ¬(p ցS q (Y )) then S/(q = Z)(p, Y ) = partYS (p), and if p ցS q (Y ) then
S/(q = Z)(p, Y ) = partYS (p)/(q = Z) can be easily shown. Thus in either case
f  partY

S
(p) y holds, contradicting outif S(p, Y, f, y).

• Now assume thruS(p, Y, f, y) holds. Thus

f, x /∈ Symbols (S(p)) ⊇ Symbols (S/(q = Z)(p)).

If ¬thruS/(q=Z)(p, Y, f, y) holds, then since f  S/(q=Z) y holds, there is an fy-
prefix µ in the schema S/(q = Z) which does not pass through <p = Y>. Thus
by Proposition 44, there is a prefix ρ in S not passing through <q = ¬Z> such
that µ is obtained from ρ by deleting all occurrences of <q = Z>; hence ρ is an
fy-prefix in S and so f  S y ∧ ¬thruS(q,¬Z, f, y) holds. Since q 6= p, ρ also
does not pass through <p = Y>, contradicting thruS(p, Y, f, y).

• Assume ¬outif S(p, Y, f, y) ∧ outif S/(q=Z)(p, Y, f, y) and aboveS(q) = q and
aboveS(p) 6= p hold. Thus p ցS/(q=Z) f (Y ) and so p ցS f (Y ) by Part (2) of
this Lemma. Hence there is an fy-segment µ in the schema partYS (p). Clearly
¬(p ցS q) holds under the hypotheses given, and since p ∈ Preds(S/(q = Z)),
µ is also an an fy-segment in S/(q = Z), giving a contradiction.
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• Assume ¬thruS(p, Y, f, y) ∧ thruS/(q=Z)(p, Y, f, y) and aboveS(q) = q and
aboveS(p) 6= p hold. Let aboveS(p) = p′ 6= p. Clearly p′ ∈ whilePreds(S). Since
p ∈ ifPreds(S/(q = Z)) and aboveS(q) = q 6= p′, S(p′) is a while schema in
S/(q = Z); thus since

thruS/(q=Z)(p, Y, f, y)

holds, either p′ ցS f or p′ ցS y holds, since otherwise an fy-segment in
S/(q = Z) need never enter the body of p′, contradicting thruS/(q=Z)(p, Y, f, y).
If both hold then thruS(p′)(p, Y, f, y) and hence thruS(p, Y, f, y) follows, giving
a contradiction. If p′ ցS f ∧ ¬(p′ ցS y) holds, then

thruS(p′)(p, Y, f, assignS(f))

holds, and if p′ ցS y ∧ ¬(p′ ցS f) holds, then

thruS(p′)(p, Y, assignS(f), y)

holds, in both cases contradicting ¬thruS(p, Y, f, y).
�

Corollary 46 (iterating Lemma 45) Let S be a linear schema. Let
{q(1), . . . , q(m)} be a set of if predicates in S which all lie immediately below S and
let Z(1), . . . , Z(m) ∈ {T, F}. Define S ′ = S/(q(1) = Z(1))/ . . . /(q(m) = Z(m)). Then
the following hold.

(1) Let f ∈ Funcs(S) and y ∈ Symbols(S ′) ∪ V. Then

f  S′ y

⇐⇒

f  S y ∧ (
∧

i≤m

¬(outif S(q(i),¬Z, f, y) ∨ thruS(q(i),¬Z, f, y)))

holds.
(2) Let y ∈ Symbols(S ′), Y ∈ {T, F} and p ∈ Preds(S) − {q(1), . . . , q(m)}. Then

p ցS′ y (Y ) ⇐⇒ p ցS y (Y ).
(3) Let f ∈ Funcs(S) and y ∈ Symbols(S ′) ∪ V. Assume f  S′ y holds. Let p ∈

ifPreds(S) − {q(1), . . . , q(m)} and Y ∈ {T, F}. Then

outif S(p, Y, f, y) ⇒ outif S′(p, Y, f, y)

and thruS(p, Y, f, y) ⇒ thruS′(p, Y, f, y) hold, and if aboveS(p) 6= p, then the
converse statements are true.

Proof. All parts follow straightforwardly from Lemma 45, using induction on m. �

36



Theorem 47 (u-similarity is inherited by part deletion) Let S, T be linear
schemas and assume S similu T for u ∈ V∪{ω}. Assume Symbols (S) = Symbols(T ) =
NS(u). Let q(1), . . . , q(m) be the set of all if predicates in NS(u) lying immediately
below S and let Z(1), . . . , Z(m) ∈ {T, F}. Define

S ′ = S/(q(1) = Z(1))/ . . . /(q(m) = Z(m))

and define T ′ similarly. Then S ′ similu T ′ holds.

Proof. Let x ∈ NS′(u). Then x ∈ NT ′(u) follows from Parts (1) and (2) of Corollary 46
and Proposition 37, Condition (10) of S similu T and Proposition 31, using induction
on depnumS (x, u). Thus NS′(u) ⊆ NT ′(u) holds. By interchanging S and T and
using Part (1) of S similu T we get NS′(u) = NT ′(u), thus proving Condition (1) of
S ′ similu T ′. Conditions (2)–(7) of S ′ similu T ′ follow at once from this, using Corollary
46. Condition (8),(9), (12) and (13) of S ′ similu T ′ follow from the fact that if p ∈
whilePreds(S ′) then the while schema S ′(p) = S(p). Condition (10) of S ′ similu T ′ is
given by Corollary 46, Part (3) and Condition (10) of S similu T . Lastly, Condition (11)
follows from Condition (10) of S ′ similu T ′ and the fact that f <<S′ g ⇐⇒ f <<S g
for any f, g ∈ Funcs(S ′), and Part (3) of Corollary 46. �

4.2 Truncated schemas

Definition 48 (q-truncated schema) Let S be a linear schema and let q ∈ ifPreds(S)
lie immediately below S. We define the schema truncS (q) as follows. Let {p(1), . . . , p(m)}
be the set of all if predicates containing q in one part; say p(i) ցS q (Z(i)) for
Z(i) ∈ {T, F}. Define S ′ = S/(p(1) = Z(1))/ . . . /(p(m) = Z(m)). Write S ′ = S ′′TS ′′′

where T is the if subschema of S guarded by q. Then define truncS (q) = S ′′.

Observe that for any linear schema S, Symbols(truncS (q)) = {x ∈ Symbols (S)| x <
<S q}; and if x ∈ Symbols (S) then f  truncS (q) x (r) ⇐⇒ (f  S x (r) ∧ x <<S q)
and x ցtruncS (q) y (Z) ⇐⇒ (x ցS y (Z) ∧ x <<S q) hold.

Lemma 49 (inheritance of congruence in truncated schemas) Let u ∈ V ∪
{ω} and let S, T be u-congruent linear schemas. Assume Symbols (S) = Symbols(T ) =
NS(u). Let q ∈ ifPreds(S) lie immediately below S and let v ∈ RefsetS(q). Then
truncS (q)congv truncT (q) holds.

Proof. Write S ′ = truncS (q) and define T ′ similarly. We prove only NS′(v) = NT ′(v);
all other conditions of S ′ similv T ′ follow easily from this; hence S ′ similv T ′ and so
S ′congv T ′ follows.
Let x ∈ NS′(v). We show x ∈ NT ′(v) by induction on
depnumS′ (x, v); the result will then follow by interchanging S and T .
If x ∈ F then x S′ y for some y ∈ NS′(v)∪{v} with depnumS′ (y, v) < depnumS′ (x, v).
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If y = v then x  T ′ y and so x ∈ NT ′(v) is easily shown. If y ∈ NS′(v) then x S y
and y ∈ NT ′(v) by the inductive hypothesis applied to y and y <<T q holds; thus
x T y since Scongu T and so x T ′ y follows, proving x ∈ NT ′(v).
If x ∈ P then x ցS′ y for some y ∈ NS′(v) with depnumS′ (y, v) < depnumS′ (x, v);
and by Proposition 37, y  S′ z for some z ∈ {v} ∪ NS′(v) with depnumS′ (z, v) <
depnumS′ (y, v) and ¬(y ցS′ z). Thus y ∈ NT ′(v) by the inductive hypothesis applied
to y. If x ∈ whilePreds(S ′) then x ցT ′ y follows from Condition (8) of S similu T ,
so assume x ∈ ifPreds(S ′). If z = v then outif S(x, X, y, q) for some X ∈ {T, F}
and so by Condition (10) of S similu T , outif T (x, X, y, q) ∨ thruT (x, X, y, q) holds;
hence by Proposition 31, outif T (x, Y, y′, q) for some y′ ∈ F and Y ∈ {T, F} with
depnumS′ (y′, v) ≤ depnumS′ (y, v), and so y′ ∈ NT ′(v) by the inductive hypothesis
and so x ∈ NT ′(v) follows. If instead z ∈ NS′(v) then x ∈ NT ′(v) can be proved
similarly. �

4.3 Relating bodies of u-similar while schemas

Lemma 50 (relating while schemas to their bodies) Let the linear
schema S = while p(x) do S ′. Then the following hold.

(1) v  S′ z ⇐⇒ v  S z and f  S′ v ⇐⇒ f  S v hold for all v ∈ V,
z ∈ Symbols(S ′) and f ∈ Funcs(S ′).

(2) f  S′ z ⇐⇒ (f  S z ∧ ¬backS(p, f, z)) for all f ∈ F and z ∈ Symbols (S ′).
(3) Let u ∈ V∪{ω}; then NS′(InvS(u)) = NS(u)−{p} and InvS′(InvS(u)) ⊆ InvS(u).

Proof. We prove only (3); (1) and (2) are straightforward.
Let v ∈ InvS(u) and x ∈ NS′(v). Clearly x 6= p. We show x ∈ NS(u) by induction
on depnumS′ (x, v). If depnumS′ (x, v) = 2 then x  S v and either v = u (and so
x ∈ NS(v) = NS(u)) or v  S y for y ∈ NS(u); hence x  S y and so x ∈ NS(u). If
depnumS′ (x, v) ≥ 3 then by Proposition 37 x S′ y ∨ x ցS′ y for some y ∈ NS′(v)
with depnumS′ (y, v) < depnumS′ (x, v); thus x ∈ NS(u) follows by the inductive
hypothesis applied to y. Thus we have shown NS(u) − {p} ⊇ NS′(InvS(u)).
Conversely, let x ∈ NS(u) − {p}. We show x ∈ NS′(InvS(u)) by induction on
depnumS (x, u). If x S u ∈ V then this is immediate since u ∈ InvS(u). If not, then
depnumS (x, u) ≥ 2 and so by Proposition 37 x S y ∨ x ցS y for some y ∈ NS(u)
with depnumS (y, u) < depnumS (x, u). If y = p∨ backS(p, x, y) then x S v for some
v ∈ RefsetS(y) and v  S y, hence v ∈ InvS(u) and so x ∈ NS′(InvS(u)). Lastly, if
x ցS y or x  S′ y then x ∈ NS′(InvS(u)) follows from the inductive hypothesis
applied to y.
Thus we have shown NS(u) − {p} = NS′(InvS(u)). Since v ∈ InvS′(InvS(u)) if and
only if v  S′ v ∈ InvS(u) ∨ v  S x ∈ NS′(InvS(u)) and v ∈ InvS(u) if and only if
v  S′ v ∈ InvS(u) ∨ v  S x ∈ NS(u), we get InvS′(InvS(u)) ⊆ InvS(u). �
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Lemma 51 (congruent while schemas have congruent bodies) Let u ∈ V ∪
{ω} and let S = while p(x) do S ′ and T = while p(x) do T ′ be linear schemas. Assume
Scongu T . Then S ′congInvS(u) T ′ holds. Also, if u = ω then S ′congω T ′ holds.

Proof. Let v ∈ InvS(u). We will show that S ′ similv T ′ holds. Part (3) of Lemma 50
proves NS′(v) ∪ NT ′(v) ⊆ NS(u) = NT (u). Thus x ∈ NS′(v) ⇐⇒ x ∈ NT ′(v) can
be proved by induction on depnumS′ (x, v) using Proposition 31, Part (2) of Lemma
50 and Conditions (1),(9) of S similu T , proving Conditions (1) and hence (4) and (6)
of S ′ similv T ′. All other conditions of S ′ similv T ′ except (5) and (10) follow straight-
forwardly from this.
We now prove Condition (5) of S ′ similv T ′. Assume that f  S′ v for f ∈ F . Thus
f ∈ NS′(v) ⊆ NS(u). We will show f  T ′ v. If v = u then f  T ′ v is immediate.
If not, then v  S y for y ∈ NS(u); hence f  T ′ v follows from Condition (12) of
S similu T and so Condition (5) of S ′ similv T ′ follows by interchanging S and T .
Lastly we show Condition (10) of S ′ similv T ′. Assume
outif S′(q, Z, f, x) ∨ thruS′(q, Z, f, x) holds for q ∈ ifPreds(S) and Z ∈ {T, F} and
f ∈ F and x ∈ NS(v) ∪ {v}. If x ∈ NS′(v) then outif T ′(q, Z, f, x) ∨ thruT ′(q, Z, f, x)
follows from Condition (10) of S similu T . If not, then x = v holds, and so v  S y for
some y ∈ NS(u); thus outif T ′(q, Z, f, x)∨thruT ′(q, Z, f, x) follows from Condition (12)
and (13) of S similu T . Thus Condition (10) of S ′congv T ′ follows by interchanging S
and T .
Hence we have shown S ′ similv T ′ and NS′(v) = NT ′(v) ⊆ NS(u) = NT (u) for every
v ∈ InvS(u) and so S ′ simil InvS(u) T ′ and hence S ′congInvS(u) T ′ holds.
It is a similar exercise to show that Scongω T ⇒ S ′congω T ′ holds. �

Lemma 52 (schema body equivalence implies schema equivalence) Let
S = while p(x) do S ′ and T = while p(x) do T ′ be linear schemas. Let V ⊆ V
and assume

InvS′(V ) ∪ InvT ′(V ) ∪ RefsetS(p) ⊆ V

holds. Assume that S ′ ∼=V T ′.

(1) Then S ∼=V T holds.
(2) If InvS′(ω) ∪ InvT ′(ω) ⊆ V and S ′ ∼=ω T ′ holds then S ∼=ω T holds.

Proof.

(1) Let i be an interpretation and assume that M[[S]]ie and M[[T ]]ie both terminate.
Suppose that <p = T> occurs exactly n times in the path πS(i, e). By induction
on r, and using Part (2) of Theorem 42 and the fact that InvS′(V )∪ InvT ′(V ) ⊆
V , M[[(S ′)r]]ie(v) = M[[(T ′)r]]ie(v) for all v ∈ V and r ∈ N, and hence since
RefsetS(p) ⊆ V , <p = T> occurs exactly n times in πT (i, e). Thus M[[S]]ie =
M[[(S ′)n+1]]ie(v) = M[[(T ′)n+1]]ie(v) = M[[T ]]ie(v) for all v ∈ V .

(2) Similar to Part (1) of this Lemma.

�
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Lemma 53 Let S be a linear schema and let u ∈ V∪{ω}. Suppose T is another linear
schema and Scongu T holds, and Symbols(S) = Symbols(T ) = NS(u) = NT (u), and
S = S1 . . . Sm and T = T1 . . . Tn holds such that each Sj and Tj is either a while schema
or an assignment. Then m = n and there is a permutation χ of the set {1, . . . , m}
such that Symbols(Sj) = Symbols (Tχ(j)), and if Sj is an assignment, then Tχ(j) = Sj

for all j, and if any Sj is a while schema then so is Tχ(j), with the same guard; and
u ∈ V ⇒ χ(m) = m holds.

Proof. The existence of χ linking subschemas of the same type and symbol set, im-
plying m = n, follows straightforwardly from the congruence definition. To show
u ∈ V ⇒ χ(m) = m, assume that u ∈ V and χ(m) = l < m. Since the symbols
of Tl+1 . . . Tm all lie in NS(u), Tl+1 . . . Tm must contain an assignment u := f(x) such
that f  T u. Similarly Sm (and hence Tl) contains an assignment u := g(y) with
f 6= g such that g  S u. Thus u := f(x) occurs in S1 . . . Sm−1. By Conditions (5),
(10) and (11) of S similu T , there is some q ∈ ifPreds(S) ∩ NS(u) such that f and
g are q-competing for u. But q would have to occur in Sm and Tl+1 . . . Tm, clearly
contradicting the other conditions on χ, giving a contradiction. �

Lemma 54 (replacing similar schemas by congruent schemas) Let
u ∈ V ∪ {ω} and let S, T be u-similar linear schemas. Then there are linear schemas
S ′, T ′ which are u-equivalent and u-similar to S and T respectively and such that
S ′congu T ′.

Proof. Assume that S and T are not already u-congruent. Then there exists x ∈ NS(u)
and r ≤ arity(x) such that the rth component of refvecS(x) is v, whereas the rth
component of refvecT (x) is w 6= v; or a similar situation holds in which S and T
differ on an assigned variable; this case can be treated analogously. We will proceed
by replacing v and w in S and T respectively by a new variable v′ to give schemas
Ŝ, T̂ which are ‘more congruent’ than S and T are, but in order to do this, we must
replace v and w not just in refvecS(x) and refvecT (x), but at other points in both
schemas which are affected by the replacement in refvecS(x) and refvecT (x). Thus
we define symbol sets

Γassign, Γref(n) ⊆ NS(u)

for n ∈ N which give, respectively, the symbols at which the assigned variable and
th nth referenced variable must be changed from v or w to v′. Γassign and Γref(n)
are defined to be the minimal sets satisfying x ∈ Γref(r) and the following closure
condition; if g  S y (r′) for y ∈ NS(u), r′ ≤ arity(y) and assignS(g) = v, then
g ∈ Γassign ⇐⇒ y ∈ Γref(r

′) holds. Let v′ be a variable not occurring in either S or

T . Let Ŝ be the schema obtained from S by setting assignS′(h) = v′ for all h ∈ Γassign

and changing the sth component of refvecS(z) from v to v′ for all z ∈ Γref(s).

We similarly replace ‘corresponding’ occurrences of w in T by v′ to get T̂ . Ŝ similu S
follows from the conditions of Definition 38, since the relation S is unaffected by this
replacement, and similarly Ŝ ∼=u S follows by observing that for every interpretation
i, the path πŜ(i, e) can be obtained from πS(i, e) by replacing some occurrences of
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v by v′; and the same relations hold for T and T̂ . We repeat this process for every
x ∈ NS(u). The resulting schemas satisfy the conditions stated. �

Theorem 55 Let u ∈ V ∪ {ω} and let S and T be u-similar linear schemas. Then S
and T are u-equivalent.

Proof. This follows by induction on |S| + |T |. By Lemma 54 we may assume that
Scongu T , and by Part (2) of Theorem 42, and the transitivity of u-congruence, we
may assume that Symbols(S) = Symbols(T ) = NS(u) = NT (u), since S and T may
be replaced by their slices containing only the symbols in NS(u). Let i be an inter-
pretation and assume that if u ∈ V then for each U ∈ {S, T}, πU (i, e) is finite. We
will show that M[[S]]ie(u) = M[[T ]]ie(u). Let Q be the set of all q ∈ ifPreds(S) for
which aboveS(q) = q. For each q ∈ Q and U ∈ {S, T}, if πU(i, e) passes through
q then the prefix of πU(i, e) preceding the sole occurrence of q contains precisely
the same sequence of assignments as πtruncU (q)(i, e). Thus by Lemma 49 and the in-
ductive hypothesis applied to truncS (q) and truncT (q), for each q ∈ Q there exists
Z(q) ∈ {T, F} such that neither πS(i, e) nor πT (i, e) passes through <q = ¬Z(q)>. Let
S ′ be obtained from S by deleting the Z(q)-part of each q ∈ Q and define T ′ similarly.
For each U ∈ {S, T}, let µ(U) ∈ alphabet(U)∗ be obtained from πU (i, e) by deleting
all occurrences of <q = Z(q)> for q ∈ Q. Thus each µ(U) = πU ′(i, e) and so if Q 6= ∅
then M[[S]]ie(u) = M[[T ]]ie(u) follows from Theorem 47 and the inductive hypothesis
applied to S ′ and T ′. Hence we may assume that Q = ∅.
Thus we may write S = S1 . . . Sm and T = T1 . . . Tn such that each Sj and each Tj is
either a while schema or an assignment.
By Lemma 53, m = n holds. We now consider two cases.

• Suppose u ∈ V. By Lemma 53,

Symbols(Sm) = Symbols (Tm) 6= ∅

holds. Let V = InvSm
(u). Clearly V = InvTm

(u), Smcongu Tm and

S1 . . . Sm−1congV T1 . . . Tm−1

can be proved using Scongu T . Thus S1 . . . Sm−1
∼=V T1 . . . Tm−1 follows from the

inductive hypothesis, and Sm
∼=u Tm holds, using Lemma 51 and Part (1) of Lemma

52 if Sm and Tm are while schemas. Thus S ∼=u T follows from Part (2) of Theorem
42.

• Suppose u = ω. We may assume (after interchanging S and T if necessary) that
for some k ≤ m, the path πS(i, e) reaches Sk and fails to terminate in Sk. Thus it
suffices to prove that πT (i, e) is infinite. By Lemma 53, there is a schema Tl such
that

Symbols (Sk) = Symbols (Tl) 6= ∅

holds. Let V = InvSk
(ω). As in Case (1), it is easy to show that V = InvTl

(ω),
Sk

∼=ω Tl, S1 . . . Sk−1congV T1 . . . Tl−1 and hence S1 . . . Sk−1
∼=V T1 . . . Tl−1 hold
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using Scongu T , the inductive hypothesis and Lemmas 51 and 52. Thus either
the path πT (i, e) fails to reach Tl (and thus is infinite) or it reaches Tl and so
M[[T1 . . . Tl]]

i
e(ω) = ⊥ follows from Part (2) of Theorem 42.

�
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5 Couples of interpretations

If a schema S contains a predicate p such that the values of pi(t) for an interpretation
i can affect M[[S]]ie(u), then changing i at a single predicate term must be able to
change M[[S]]ie(u). This motivates Definition 56.

Definition 56 (Fpu-couples and p(t)u-couples for a schema) Let i, j be inter-
pretations and let p ∈ P. We say that the set {i, j} is a p-couple if there is a term t
such that i and j differ only at the predicate term p(t). In this case we may also say
that {i, j} is a p(t)-couple. If t is an F -term, then {i, j} is an Fp-couple. If S is a
schema and u ∈ V ∪ {ω}, and M[[S]]ie(u) 6= M[[S]]je(u) (note that if u = ω, this means
that exactly one side terminates) and if u ∈ V then both sides terminate, then we
may say that {i, j} is an Fpu-couple (or a p(t)u-couple) for S.

Note that a pu-couple is simply an Fpu-couple with F as the empty word.

Proposition 57 (equivalence preserves existence of pu-couples) Let S and T
be schemas, let p ∈ P and u ∈ V ∪ {ω}, suppose S ∼=u T and let I be a pu-couple for
S. Suppose either that S ∼=ω T holds, or that T is free and I is (q, T)-finite for all
q ∈ Preds(T ); then I is also a pu-couple for T . �

We will frequently use Proposition 57 in the remainder of this paper by studying the
characteristics of the Fpu-couples of u-equivalent LFL schemas. In order to do this, we
will define functions which we call grades on interpretations and couples (Definitions
62 and 108).

Definition 58 (head and tails of a couple) Let S be an LFL schema, let u ∈
V ∪ {ω}, and let q ∈ Preds(S). Let I = {i, j} be a qu-couple for S and write

πS(k, e) = µ <q = Z(k)> ρ(k)

for each k ∈ I and {Z(i), Z(j)} = {T, F}; thus, µ is the maximal common prefix of
πS(i, e) and πS(j, e). Then we define tailS(k, I) = ρ(k) for each k ∈ I and headS(I) =
µ.
If p ∈ P, we also define TailtermsS(p, k, I) to be the set of predicate terms p(t) such
that

t = M[[schema(headS(I)ν)]]e(refvecS(p))

for some segment ν of S satisfying ν <p = X>∈ pre(tailS(k, I)) for some X ∈ {T, F},
and HeadtermsS(p, I) to be the set of predicate terms p(t) such that

t = M[[schema(ν)]]e(refvecS(p))

for some prefix ν of S satisfying ν <p = X>∈ pre(headS(I)) for some X ∈ {T, F}.
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Given Y ∈ {T, F}, we define TailtermsS(p, Y, k, I) to be the set

{p(t) ∈ TailtermsS(p, Y, k, I)| pk(t) = Y }

and HeadtermsS(p, Y, I) to be the set {p(t) ∈ HeadtermsS(p, Y, I)| pk(t) = Y for k ∈
I} (clearly well-defined).

Proposition 59 demonstrates the use of requiring our schemas to be liberal.

Proposition 59 Let S, T1, T2 be predicate-free schemas and assume that each schema
STi is liberal. Let v1, v2 ∈ V. If M[[ST1]]e(v1) = M[[ST2]]e(v2), then M[[T1]]e(v1) =
M[[T2]]e(v1) holds.

Proof. Assume M[[ST1]]e(v1) = M[[ST2]]e(v2) holds. The conclusion is proved by in-
duction on the number of assignments in T1. We may assume that T1 and (similarly)
T2 contain assignments to v1 and v2 respectively, since if the last assignment to v1 in
ST1 occurs in S, then since ST2 is liberal, this is also the last assignment to v1 = v2

in ST2; hence M[[T1]]e(v1) = M[[T2]]e(v2) = v1 = v2.
Let vi := fi(ui); be the last assignment to vi in Ti for each i. Clearly f1 = f2. Let u1 and
u2 be the first components of u1 and u2 respectively, and write Ti = T ′

i vi := fi(ui); T
′′
i

for each i. By the inductive hypothesis applied to S and each T ′
i , the term M[[T ′

i ]]e(ui)
is the same for each i; the Proposition then follows from the analogous result for the
other components of each ui. �

Proposition 59 does not hold for non-liberal schemas; for example, if S and T1 are
v := f(); (so ST1 is not liberal) and T2 = Λ.

Lemma 60, which will be much used in the rest of this paper, shows that the head of
a pu-couple for a schema can be changed without changing the tails.

Lemma 60 (changing the head of a couple) Let S be an LFL schema and let
p ∈ Preds(S) and u ∈ V ∪ {ω}. Suppose there is a pu-couple I for S and a prefix
µ <p = T> in S, then there is a pu-couple I ′ for S such that µ = headS(I ′) and
{tailS(k, I)| k ∈ I} = {tailS(k, I ′)| k ∈ I ′}. In particular, if there is a pu-couple I for
S and S contains an Fp-segment for F ∈ F∗, then there exists an Fpu-couple I ′ for
S.

Proof. Write I = {i, j} and assume that it is i which maps the predicate term on which
i and j differ, to T. Write α(i) = headS(I) <p = T> and α(j) = headS(I) <p = F>.
First observe that if σ(i) and σ(j) are prefixes of tailS(i, I) and tailS(j, I) respectively,
and x ∈ V, and

M[[schema(µσ(i))]]e(x) = M[[schema(µσ(j))]]e(x), (1)

then M[[schema(σ(i))]]e(x) = M[[schema(σ(j))]]e(x) using Proposition 59, and so

M[[schema(α(i)σ(i))]]e(x) = M[[schema(α(j)σ(j))]]e(x). (2)
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We now define the couple I ′ = {i′, j′} as follows. Let y = refvecS(p) and t =
M[[schema(µ)]]e(y). Define pi′(t) = T, pj′(t) = F. Given any predicate q, vector term
u and X ∈ {T, F} such that q(u) 6= p(t) and q(u) = X is a consequence of one of the
paths µ <p = T> tailS(i, I) or µ <p = F> tailS(j, I), we define q(u) = qj′(u) = X; in
the remaining cases we define qi′(u) = qj′(u) arbitrarily. We need to show that this
definition does not contain an inconsistency. Suppose that q(u) = T and q(u) = F are
both consequences of either of the paths µ <p = T> tailS(i, I) or µ <p = F> tailS(j, I).
Since S is free, q(u) = T and q(u) = F cannot both be consequences of the same path,
so after interchanging i and j if necessary, q(u) = T is a consequence of µ <p = T>
tailS(i, I) and q(u) = F is a consequence of µ <p = F> tailS(j, I). If q(u) = p(t) then
no inconsistency occurs; and q(u) = T and q(u) = F are not consequences of µ, since
S is free; thus there are prefixes σ(i) <q = T> and σ(j) <q = F> of tailS(i, I) and
tailS(j, I) respectively such that (1) and hence (2) hold for every x ∈ RefsetS(q). But
this is impossible since then either

headS(I) <p = T> σ(i) <q = T> /∈ pre(πS(i, e))

or

head(I) <p = F> σ(j) <q = F> /∈ pre(πS(j, e))

holds. Hence the definitions of i′ and j′ are consistent. Thus to show that I ′ = {i′, j′}
is a pu-couple for S, it remains only to show that M[[S]]i

′

e (u) 6= M[[S]]j
′

e (u). But if
this were false, then clearly u ∈ V and (1) and hence (2) would hold for x = u and
σ(i) = tailS(i, I) and σ′(j) = tailS(j, I), contradicting the hypothesis that {i, j} is a
pu-couple for S. �

Lemma 60 is false for schemas which are not LFL. To see this, consider the free,
linear, schema S of Figure 6. Owing to the constant g-assignment, S is not liberal.
There is clearly an hpv-couple for S, but there is no fhpv-couple for S, although S
contains an fhp-segment; indeed the slice of S obtained by deleting the f -assignment
is v-equivalent to S.

Definition 61 (grade of a segment) Let S be a linear schema, let p ∈ P, X ∈
{T, F} and let µ be a segment in S. We define grade(µ, p, X) to be the number of
occurrences of <p = X> in the segment µ.

Note that S is not one of the parameters of grade ; if µ is also a segment in a linear
schema T , then its grade is unchanged.

Definition 62 (grade of an interpretation) Let i be an interpretation and let q ∈
P and X ∈ {T, F}. We define grade(i, q, X) to be the number of predicate terms q(t)
for which qi(t) = X. If I is a p-couple for some p ∈ P, then grade(I, q, X) is the
minimal element of {grade(i, q, X)| i ∈ I}.

Clearly if a schema S is free then grade(i, q, X) ≥ grade(πS(i, e), q, X) always holds.
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while q(u) do

{

u :=k(u);

w :=h(w);

if p(w) then

{

v := g();

w := f(w);

}

else Λ

}

Fig. 6. Schema S

Definition 63 (reasonable subsets of P × {T, F}) A subset of P × {T, F} is said
to be reasonable if it does not contain a pair {(p, T), (p, F)}.

Definition 64 (finite and minimal interpretations for a sum) Let Ω ⊆ P ×
{T, F} be finite and reasonable. An interpretation i is said to be Ω-finite if

∑

(p,X)∈Ω

grade(i, p, X) < ∞.

The interpretation i is said to be Ω-minimal for a set I ∋ i if
∑

(p,X)∈Ω grade(i, p, X)
is minimal over all interpretations in I. If Ω = {(p, X)} then we simply write (p, X)-
finite and (p, X)-minimal.
We extend these definitions to couples of interpretations in the natural way using
Definition 62.

We will show in Lemma 69 that for a reasonable set Ω, and a set I of qu-couples for
S, an Ω-minimal qu-couple for S in the set I must have an Ω-minimal head. This
motivates the definition of the function θS,p,X,I,J (Definition 66).

Definition 65 (normalising an interpretation or couple) Let S be a schema,
let i be a interpretation and let p ∈ Preds(S) and Y ∈ {T, F}. Then we say that
i is (S, p, Y )-normalised if grade(i, p, Y ) = grade(πS(i, e), p, Y ) holds. For any q ∈
Preds(S) a q-couple {i, j} is said to be (S, p, Y )-normalised if for all predicate terms
p(t), we have p(t)i = p(t)j = ¬Y if p(t) = Y is not a consequence of either of the
paths πS(i, e) or πS(j, e).

Clearly for any interpretation or couple, there is an (S, p, Y )-normalised interpretation
or couple defining the same path(s) through S.
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Definition 66 (The θS,p,X,I,J bijection) Let S be an LFL schema, let
p, q ∈ Preds(S), let u ∈ V ∪{ω} and let I, J be qu-couples for S which have the same
pair of tails in S. Let X ∈ {T, F}. We define the mapping

θS,p,X,I,J :
⋃

k∈I

TailtermsS(p, X, k, I) →
⋃

k∈J

TailtermsS(p, X, k, J)

as follows. Let p(t) ∈ TailtermsS(p, X, k, I) for some k ∈ I. Then there is a segment
µ <p = X>∈ pre(tailS(k, I)) such that

t = M[[schema(headS(I)µ)]]e(refvecS(p)).

Let t′ = M[[schema(headS(J)µ)]]e(refvecS(p)) and define θS,p,X,I,J(p(t)) = p(t′). By
Proposition 59 p(t′) is independent of the particular choice of µ and k, so the function
θS,p,X,I,J is well-defined.

Observe that θS,p,X,I,J = (θS,p,X,J,I)
−1; thus θS,p,X,I,J is a bijection.

Lemma 67 (same-tail couples have same number of (p, X)-tailterms) Let S
be an LFL schema, let p, q ∈ Preds(S) and let I = {i(1), i(2)} and J = {j(1), j(2)} be
qu-couples for S for some u ∈ V ∪ {ω}. Let X ∈ {T, F} and assume that the couples
have the same pairs of tails; that is, tailS(i(k), I) = tailS(j(k), J)) for each k ∈ {1, 2}.
Let Y ∈ {T, F}. Then

|TailtermsS(p, X, i(k), I)| = |TailtermsS(p, X, j(k), J)|

for each k ∈ {1, 2} and

|
⋂

k∈{1,2}

TailtermsS(p, X, i(k), I)| = |
⋂

k∈{1,2}

TailtermsS(p, X, j(k), J)|.

Proof. This follows from the freeness of S and the fact that the bijection θS,p,X,I,J

maps TailtermsS(p, X, i(k), I) onto TailtermsS(p, X, j(k), J) for each k ∈ {1, 2}. �

Proposition 68 (computing the (p, X)-grade of a couple) Let S be an LFL schema,
let p, q ∈ Preds(S) and let I = {i, j} be a qu-couple for S for some u ∈ V ∪ {ω}. Let
X ∈ {T, F} and assume that I is (S, p, X)-mormalised. Then

grade(I, p, X) = |
⋃

k∈I

TailtermsS(p, X, k, I)| + grade(headS(I), p, X)

holds.

Proof. This follows immediately from the freeness of S, since

TailtermsS(p, k, I) ∩ HeadtermsS(p, I) = ∅
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for each k ∈ I. �

Lemma 69 (Ω-minimal couple has Ω-minimal head) Let u ∈ V ∪ {ω} and let
S be an LFL schema. Let q ∈ Preds(S) and let I be a set of qu-couples for S. Let Ω
be a reasonable finite subset of P × {T, F} and let I ∈ I be Ω-finite and Ω-minimal
for all couples in I. Let J be a qu-couple for S obtained by changing the head of I in
S. Assume that J ∈ I. Then

∑

(p,X)∈Ω

grade(headS(J), p, X) ≥
∑

(p,X)∈Ω

grade(headS(I), p, X)

holds, and J is Ω-minimal for all couples in I if and only if equality holds and J is
(p, X)-normalised for every (p, X) ∈ P .

Proof. This follows immediately from Lemma 67, Lemma 60 and Proposition 68. �
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6 u-equivalence implies Conditions (1), (4), (5) and (6) of u-similarity

Theorem 75 and Lemmas 72 and 74 are the main results of this Section, whose other
results will not be used in other Sections.

Proposition 70 Let S be a free linear schema and assume that x S g (r) and that
there exists an xgGv-segment in S for g ∈ F , v ∈ V, x ∈ F ∪ V and G ∈ F∗. Then
there is an interpretation i such that x M[[S]]ie(v) g (r).

Proof. Since S is free, there is an interpretation i such that πS(i, e) contains the
fgGv-segment, and so the result follows from the definition of M[[S]]ie(v). �

Proposition 71 If S is a linear schema and there is an interpretation i such that
x  M[[S]]ie(v) g (r) for some v ∈ V, x ∈ V ∪ F and g ∈ F then x  S g (r) and there
exists an xgGv-segment in S for some G ∈ F∗.

Proof. This follows from the definition of M[[S]]ie(v). �

Lemma 72 Let S be a free schema and assume that p ∈ whilePreds(S). For each
predicate q ∈ ifPreds(S), let X(q) ∈ {T, F}. Let p′ ∈ Preds(S) and assume that p′ = p
or p′ ցS p. Then there exists a p′ω-couple {i, j} for S (where πS(j, e) terminates)
which is (q, X(q))-finite for every if predicate q, and is (q, T)-finite for every while
predicate q 6= p, and satisfies qi(t) = F for all while predicates q such that (q 6=
p) ∧ ¬(q ցS p) and satisfies qi(t) = ¬X(q) for all if predicates q such that ¬(q ցS

p (X(q)).

Proof. Let µ be a path in the body of p in S which does not enter the body of any
while predicate in bodyS(p) or the X(q)-part of any if predicate q in bodyS(p). Choose
a prefix τ <p = T>∈ pre(Π(S)) such that if τ passes through a letter <q = X(q)>
for any q ∈ Preds(S), then q ցS p (X(q)).
Let the interpretation i satisfy

πS(i, e) = τ (<p = T> µ)ω

and assume that i is (S, q, X(q)-normalised for every q ∈ ifPreds(S) and (S, q, T)-
normalised for every q ∈ whilePreds(S).
The prefix τ <p = T> has a prefix τ ′ <p′ = X >, where X = T if p′ = p and
p′ ցS p (X) otherwise. Let the vector term

u = M[[schema(τ ′)]]e(refvecS(p′))

and let the interpretation j = i(p′(u) = ¬(X)). We will show that j terminates for S.
Since j is (q, T)-finite for every q ∈ whilePreds(S)−{p}, and S is free, the path πS(j, e)
could only fail to terminate by having infinitely many occurrences of <p = T>. This is
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impossible if the predicate p′ lies immediately below S, since clearly τ ′ <p′ = ¬(X)>
is a prefix of the path πS(j, e), so this path does not contain the letter <p′ = X>.
Alternatively, let p′′ be the while predicate immediately above p′. Since there is only
one predicate term p′′(t) for which p′′(t) = T is a consequence of j, the path πS(j, e)
cannot reenter the body of p′′ after τ ′ <p′ = ¬(X)>, and so cannot enter the body or
X-part of p′; thus πS(j, e) must terminate. Hence {i, j} is a p′ω-couple for S which
satisfies the stated conditions. �

Lemma 73 Let S be an LFL schema and assume that p ∈ Preds(S). Let q ∈ Preds(S)
and assume that q ցS g (X) for some X ∈ {T, F} and g ∈ F . Let u ∈ V∪ω. Suppose
that there exists a (q, X)-finite pu-couple {i(1), i(2)} for S, and S contains a gGp-
segment for some G ∈ F∗. Then there exists a qu-couple J for S such that for all
r ∈ P and Z ∈ {T, F} such that {i(1), i(2)} is (r, Z)-finite, the new couple J is also
(r, Z)-finite.

Proof. By Lemma 60 we may assume that {i(1), i(2)} is a gGpu-couple for S. Define
the interpretations j(k) = i(k)(q = ¬X) for each k ∈ {1, 2}. Clearly the interpreta-
tions j(k) satisfy every (r, Z)-finiteness condition that each i(k) satisfies. The paths
πS(j(k), e) do not pass through g; since the interpretations j(1) and j(2) differ only at
a predicate term containing g, we get M[[S]]j(1)e (u) = M[[S]]j(2)e (u). Hence for at least
one k ∈ {1, 2} we get M[[S]]i(k)

e (u) 6= M[[S]]j(k)
e (u). Since the interpretations i(k) and

j(k) differ only at finitely many q-predicate terms, and agree on all predicate terms
r(t) for r 6= q, there exists a qu-couple J for S whose elements map every predicate
term r(t) to either ri(k)(t) or rj(k)(t) and hence satisfy the given finiteness conditions.
�

Lemma 74 connects the syntactically defined set NS(u) with the semantic definition
of a pu-couple for S.

Lemma 74 (p ∈ NS(u) implies there is a pu-couple for S) Let S be an LFL
schema and let p ∈ P.

(1) Let v ∈ V. Suppose that p ∈ NS(v). Then there exists a pv-couple for S.
(2) Suppose that there is a while predicate q and a q-dependence sequence w for p in

S. For each r ∈ ifPreds(S) choose Z(r) ∈ {T, F} and assume that if w contains
a 2-letter subword rx with r ∈ ifPreds(S), then r ցS x (Z(r)) holds. Then there
exists a pω-couple {i, j} for S which is (r, Z(r))-finite for all r ∈ ifPreds(S) and
(q′, T)-finite for all q′ ∈ whilePreds(S) − {q}.

Proof.

(1) Let pwv be a minimal v-dependence sequence for p. The result follows by induc-
tion on the length of w. If w contains no predicates, then w = gF for F ∈ F∗

and g ∈ F with p ցS g (Z). Thus there is a gFv-segment in S. Let i be
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a (p, Z)-finite interpretation passing through this segment; thus M[[S]]ie(v) is
a gF -term. Let j = i(p = ¬Z). Clearly M[[S]]je(v) is not a gF -term, and so
M[[S]]ie(v) 6= M[[S]]je(v), and since i and j differ only on finitely many p-predicate
terms, the result follows. Alternatively, assume that w contains a predicate q; by
the minimality of pwv we may write pwv = pgFqw′v with F ∈ F∗ and g ∈ F
with p ցS g (Z). Here the result follows from Lemma 73 and the inductive
hypothesis applied to q.

(2) The result follows by induction on the length of w. If w contains only predicate
symbols (and hence (p = q) ∨ (p ցS q) holds), then the result follows from
Lemma 72. For the general case, we may write w = pPgGp′w′ with P ∈ P∗ ,
G ∈ F∗ and g ∈ F . Since the relation ցS is transitive, p ցS g (Z) holds
for some Z ∈ {T, F}. By the assumption given, p ∈ ifPreds(S) ⇒ Z = Z(p)
holds. By the inductive hypothesis applied to p′ and q, there is a p′ω-couple I
for S satisfying the required conditions; in particular, p ∈ ifPreds(S) implies I
is (p, Z)-finite. The result now follows from Lemma 73.

�

Theorem 75 (S ∼=u T implies conditions (1),(4),(5),(6) of S similu T ) Let
u ∈ V∪{ω} and let S, T be LFL schemas. Assume that S ∼=u T . Then NS(u) = NT (u).
If x ∈ F ∪ V and y ∈ ({u} ∩ V) ∪ NS(u), then x S y (n) ⇐⇒ x T y (n).

Proof. We first prove that NS(u) = NT (u). If p ∈ NS(u) ∩ P then by Lemma 74
there is a pu-couple for S, and hence for T by Proposition 57. Thus p ∈ NT (u) using
Part (2) of Theorem 42, since otherwise a u-equivalent slice of T not containing p
could be obtained. Hence NS(u) ∩ P ⊆ NT (u) ∩ P and equality similarly holds. If
f ∈ NS(u) ∩ F then either u ∈ V and there is an fFu-segment in S for F ∈ F∗ (in
which case this also holds in T , so f ∈ NT (u)) or there is an fFpu-segment in S for
F ∈ F∗ for p ∈ NS(U) ∩ P, and so by Lemma 60 there is an fFp-couple for S and
hence for T , so f ∈ NT (u). Thus NS(u)∩F ⊆ NT (u)∩F and equality similarly holds.
Now assume that x S y (n) for x ∈ F ∪ V and y ∈ NS(u)∪ ({u} ∩ V). If S contains
an xFp-segment, where F ∈ F∗, p ∈ NS(u) ∩ P and y is the first letter of Fp, then
by Lemma 74, there is a p(t)u-couple {i, j} for S and hence T by Proposition 57,
where x  p(t) y (n). Hence πT (i, e) passes through p(t) and so x  T y (n) holds.
If alternatively S contains an xFu-segment for u ∈ V, where F ∈ F∗ and y is the
first letter of Fu, then x T y (n) follows from Propositions 70 and 71 provided that
y ∈ F ; the case with y = u follows similarly.
Thus we have shown that x S y (n) ⇒ x T y (n) and the converse similarly holds.
�

The following result will be useful.

Theorem 76 Let u ∈ V∪{ω} and let S be an LFL schema. Let T be any free schema.
Assume that S ∼=u T . Let p(t) be a predicate term with p ∈ NS(u) and assume that
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there is a path through S passing through p(t). Then there is a p(t)u-couple for T ; in
particular, there is a path through T passing through p(t).

Proof. The result follows immediately from Proposition 57 and Lemma 74. �
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7 Passages of a linear schema

The main result of this section is Theorem 90, whose statement is fairly similar to
that of Part (2) of Lemma 74, but which requires a quite different method of proof.
No other results in this section will be quoted later. In this section we will show
(Theorem 81) that a path through a linear schema can be thought of as passing
through a succession of while-free linear schemas which we call passages (Definition
78). This allows us to study how a single change in the definition of an interpretation
feeds through a schema to eventually affect termination.

Definition 77 (super-while predicates of a schema) Let S be a linear schema
and let p ∈ Preds(S). We say that p is a super-while predicate of S if either p ցS q
for some q ∈ whilePreds(S) or p ∈ whilePreds(S). We define swhilePreds(S) to be the
set of super-while predicates of S.

Definition 78 (schema passages and the nextpredS partial function) Let S be
a linear schema. We will define a set Passages(S) of linear while-free schemas, and
super−while predicates firstpred(S) and nextpredS(p, Z) for p ∈ swhilePreds(S), and
Z ∈ {T, F}, as follows. Write S = S1 . . . Sn where each Si is indecomposable, then
define the initial passage init(S) = S1 . . . Sr, where the integer r is maximal such
that S1 . . . Sr is while-free. If r < n then Sr+1 is an if or while schema and we define
firstpred(S) to be its guard; if r = n then firstpred(S) is undefined.
Having defined init(S) and firstpred(S) for all linear schemas S, let
p ∈ swhilePreds(S), and let Z ∈ {T, F}; we recursively define passageS(p, Z) and
nextpredS(p, Z) ∈ swhilePreds(S) as follows.
Assume that passageT (p, Z) and nextpredT (p, Z) have been defined (or declared unde-
fined) for all linear schemas T satisfying |T | < |S| and let M be the main subschema
of S lying immediately above p in S and write M = S1 . . . Sn where each Si is inde-
composable. Assume that p ∈ Preds(Sr). The schema Sr is clearly either an if schema
or the while schema whose body is guarded by p ∈ whilePreds(S). We consider three
cases separately.

• Assume that the schema Sr is a while schema, and thus its body is guarded by
p ∈ whilePreds(S). We define

passageS(p, X) =







init(Sr+1 . . . Sn) X = F

init(bodyS(p)) X = T

and nextpredS(p, X) =
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firstpred(Sr+1 . . . Sn) X = F, firstpred(Sr+1 . . . Sn) defined.

guard of M X = F, firstpred(Sr+1 . . . Sn) undefined, M 6= S

undefined X = F, firstpred(Sr+1 . . . Sn) undefined, M = S

firstpred(bodyS(p)) X = T, firstpred(bodyS(p)) defined

p X = T, firstpred(bodyS(p)) undefined.

• If Sr is an if schema guarded by p′ 6= p, and if p′ ցS p (X), then we define

passageS(p, Z) = passagepartX

S
(p′)Sr+1...Sn

(p, Z)

and nextpredS(p, Z) = nextpredpartX

S
(p′)Sr+1...Sn

(p, Z).
• If Sr is an if schema guarded by p, then

passageS(p, Z) = init(partZS (p)Sr+1 . . . Sn)

and nextpredS(p, Z) = firstpred(partZS (p)Sr+1 . . . Sn).

We call the elements of Passages(S) and the schema init(S) the passages of S.

A passage of S need not be a subschema of S; for example, if
S = ( if p(x) then T ′ else T ′′)T ′′′, where T ′′ and T ′′′, but not T ′, are while-free, then
passageS(p, F) = T ′′T ′′′.

Lemma 79 Let S be a linear schema. Then passageS(p, Y ) = passageS(q, Z) implies
nextpredS(p, Y ) = nextpredS(q, Z). Also, if x ∈ Funcs(S) ∪ Preds(S) is not a super-
while predicate of S, then x lies in exactly one passage of S.

Proof. This follows by induction on |S|. �

Definition 80 (extending the definition of nextpredS) Let S be a linear schema
and let P be a passage of S. Then we define nextpredS(P ) = firstpred(S) if P =
init(S) and nextpredS(P ) = nextpredS(q, Z) if P = passageS(q, Z). If x is a symbol
in P , we also define nextpredS(x) = nextpredS(P ). By Lemma 79, nextpredS is well-
defined as a partial function.

The motivation for this definition is given by the following result.

Theorem 81 Let S be a linear schema.

(1) Let µ ∈ pre(Π(S)). Write

µ = µ(0) <q1 = X1> µ(1) <q2 = X2> . . . µ(n)

where the letters <qr = Xr> are all the occurrences of elements of
swhilePreds(S) in µ. Then each segment µ(r) ∈ Π(passageS(qr, Xr)) for r ≤ n−1
and µ(n) ∈ pre(Π(passageS(qn, Xn))), and µ(0) ∈ Π(init(S)) if n ≥ 1. Also each
qr+1 = nextpredS(qr, Xr), and q1 = firstpred(S).
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(2) Let µ(0) ∈ Π(init(S))and define q1 = firstpred(S), qr ∈ swhilePreds(S) for
2 ≤ r ≤ n such that each qr+1 = nextpredS(qr, Xr). Let Xr ∈ {T, F} for each
r ∈ {1, . . . , n}. Let µ(r) ∈ Π(passageS(qr, Xr)) for 1 ≤ r ≤ n. Then

µ(0) <q1 = X1> µ(1) <q2 = X2> . . . µ(n) ∈ pre(Π(S)).

Proof. Both results follow by induction on |S|, using Definition 9 and by expressing
S in one of the forms AB, if p(y) then A else B, while p(y) do A or as an assignment,
and using the inductive hypothesis applied to A and B. �

Observe that if S is a linear schema and P is a passage of S with q ∈ ifPreds(P ) then
q ցS x (Z) ⇐⇒ q ցP x (Z) holds for all x ∈ Symbols(S) and Z ∈ {T, F}. Also
f  P x ⇐⇒ (f  S x ∧ (¬backS(q, f, x))∀q ∈ whilePreds(S)) holds if P contains
both f ∈ F and x ∈ F ∪ P.

The definition of liberality that we have used up to now, using the natural state, is too
narrow for our purposes here; we need to consider paths defined using initial states
apart from e.

Definition 82 (liberality with respect to a state) Let S be a schema and let c :
V → Terms(F ,V) be a state. Then we say that S is c-liberal if given any interpretation
i such that πS(i, c) passes through a function symbol f , the path πS(i, c) defines a
different f -term (with respect to the initial state c) each time it passes through f ,
and all such terms are different from every element of {c(v)| v ∈ V}.

Proposition 83 Let S be an LFL schema and let µ <q = Z> ∈ pre(Π(S)). Let the
state c = M[[schema(µ)]]e. Then the schema passageS(q, Z) is c-liberal.

Proof. This follows immediately from the fact that S is LFL. �

Lemma 84 Let S be a linear while-free schema and let v ∈ V. For each q ∈ ifPreds(S),
let Y (q) ∈ {T, F}.

(1) Let c1, c2 be any states which differ on a variable in InvS(v), and assume that
S is ck-liberal for each k ∈ {1, 2}. Then there is an interpretation i such that
M[[S]]ic1(v) 6= M[[S]]ic2(v) and for each q ∈ ifPreds(S), if πS(i, c1) passes through
<q = Y (q)>, then πS(i, c2) does not pass through <q = ¬Y (q)>.

(2) Let c be any state such that S is c-liberal and let p ∈ NS(v). Then there is a
p-couple {i, j} such that M[[S]]ic(v) 6= M[[S]]jc(v) and for each q ∈ ifPreds(S), if
the path πS(i, c) passes through <q = Y (q)>, then πS(j, c) does not pass through
<q = ¬Y (q)>.

Proof.
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(1) This follows by induction on |S|. If S is an assignment, then the result is imme-
diate. If S = AB nontrivially, then the result follows by the inductive hypothesis
applied to A and B. Lastly, assume that S = if p(x) then A else B. If c1 and c2

differ on a variable in InvA(v) then by the inductive hypothesis applied to A,
there is an interpretation j such that M[[A]]jc1(v) 6= M[[A]]jc2(v) and j satisfies
the additional hypothesis on if predicates, so i = j(p = T) gives the result. The
case where c1 and c2 differ on a variable in InvB(v) can be treated similarly. On
the other hand, if c1 and c2 agree on every element of InvA(v) ∪ InvB(v), then
p ∈ NS(v) and c1(x) 6= c2(x) follows, and either A or B contains an assignment
to v. We may assume the former; f  A v, say. We will assume Y (p) = F; oth-
erwise interchange c1 and c2. Since S is linear and c1(x) 6= c2(x), there is an
interpretation i such that πS(i, c1) ends in an fv-segment, and πS(i, c2) enters B,
and the two paths satisfy the conditions on ifPreds(S). If πS(i, c2) passes through
an assignment to v then i clearly satisfies the required conditions. If not, then
v  B v and so v ∈ InvB(v) holds, thus M[[S]]ic2(v) = c2(v) = c1(v) 6= M[[S]]ic1(v),
where the inequality follows since S is c1-liberal.

(2) This also follows by induction on |S|, using a similar classification of schemas to
that used in proving the first part of this Lemma.

�

Definition 85 (passage sequences) Let S be a linear schema and let
x ∈ Symbols (S) − swhilePreds(S) and y ∈ Symbols (S).
A y-passage sequence for x in S is a word

w = xq1Z1q2Z2 . . . qmZmy

for Zi ∈ {T, F} and qi ∈ swhilePreds(S) such that there is a passage P0 in S containing
x, and if we define the passages Pi = passageS(qi, Zi) for each i < m, then one of the
following holds;

• m = 0 (that is, w = xy) and either y ∈ Symbols (P0) ∧ x ∈ NP0
(y), or y =

nextpredS(x) ∧ x ∈ NP (v) for some v ∈ RefsetS(y), or
• m > 0 and q1 = nextpredS(x), each qi+1 = nextpredS(Pi), and there are variables

v1, . . . , vm such that x ∈ NP0
(v1) and each vi ∈ InvPi

(vi+1) for i < m, and either
y ∈ Symbols (Pm) ∧ vm ∈ InvPm

(y) or y = nextpredS(Pm)∧ vm ∈ InvPm
(v) for some

v ∈ RefsetS(y).

Lemma 86 (joining of passage sequences at a symbol) Let S be a
linear schema and let xq1Z1q2Z2 . . . qmZmy and yq′1Z

′
1q

′
2Z

′
2 . . . q′nZ

′
nz be passage se-

quences in S for x, y ∈ Symbols (S) − swhilePreds(S) and z ∈ Symbols(S). Then

xq1Z1q2Z2 . . . qmZmq′1Z
′
1q

′
2Z

′
2 . . . q′nZ

′
nz

is a z-passage sequence for x in S.
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Proof. This follows immediately from the preceding definition. �

Lemma 87 (dependence sequences imply passage sequences) Let S be a lin-
ear schema and let x ∈ Symbols (S) − swhilePreds(S). Let y ∈ Symbols(S). Suppose
there is a y-dependence sequence xwy for x in S such that the word w does not contain
any super-while predicates, then there is a y-passage sequence for x in S.

Proof. The result follows by induction on the length of w. We may assume that x 6= y
and that xwy is minimal and so contains no repeated symbols. Let P be a passage
containing x. Let xw′ be the longest prefix of xwy such that if fz is a two-letter
segment of xw′ with f ∈ F , then there is an fz-segment in S which is also a segment
of P . If w′ = wy then xy is a y-passage sequence for x in S. If not, then xw′ ends
in a function symbol, f say. Clearly f 6= y. Write xwy = xW1fzW2, where z is the
first letter of xwy immediately after f . By the inductive hypothesis applied to xW1f
and zW2, there is an f -passage sequence xp1Y1 . . . pmYmf for x in S and a y-passage
sequence zq1Z1 . . . qnZny for z in S.
Let

µ(1) <r(1) = X(1)> µ(2) . . . <r(k) = X(k)> µ(k + 1)

be an fz-segment in S, written such that the letters <r(i) = X(i) > are all the
occurrences of super-while predicates in the segment. By the choice of w′, we have
k ≥ 1. Let f assign to v in S; thus by Part (1) of Theorem 81, we get f  passageS(pm,ym)

v,

v  passageS(r(j),X(j)) v

for each j < k, and

v  passageS(r(k),X(k)) z.

Thus fr(1)X(1) . . . r(k)X(k)z is a z-passage sequence for f in S. Hence

xp1Y1 . . . pmYmr(1)X(1) . . . r(k)X(k)zq1Z1 . . . qnZny

is a y-passage sequence for x in S, by Lemma 86. �

Lemma 88 Let S be an LFL schema and for every q ∈ ifPreds(S) let Y (q) ∈ {T, F}.
Let σ1, σ2 ∈ pre(Π(S)) and assume that there exists m ≥ 0 and
Z0, . . . , Zm−1 ∈ {T, F} and that for each k ∈ {1, 2} there exists Xk ∈ {T, F} such that

σk = µ <q0 = Z0> µ(0, k) <q1 = Z1> µ(1, k) . . . . . . µ(m − 1, k) <qm = Xk>

such that each qr ∈ swhilePreds(S) and µ(r, k) ∈ Π(passageS(qr, Zr)) and qr+1 =
nextpredS(qr, Zr). Suppose that σ2τ ∈ pre(Π(S)) for some segment τ in S and the
following conditions hold for every q ∈ ifPreds(S);

(1) the segment τ does not pass through <q = Y (q)>;
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(2) for each r < m, if µ(r, 2) passes through <q = Y (q)>, then µ(r, 1) does not pass
through <q = ¬Y (q)>;

(3) for any s < m and r < s, if µ(r, 1) passes through <q = Y (q)> and µ(r, 2) passes
through <q = ¬Y (q)>, then µ(s, 2) does not pass through <q = Y (q)>.

Let x ∈ F ∪P. Suppose that the prefixes σ1 and σ2τ both pass through the x-term x(t)
and x(t) occurs in µ(r, 1) along σ1. Then x(t) occurs in µ(s, 2) along σ2τ , for some
s ≤ r.

Proof. This follows by induction on the sum of the lengths of the prefixes of σ1 and
σ2τ ending in the mentioned occurrences of x. Assume that the conclusion of the
Lemma is false; thus x(t) occurs either along τ or along µ(s, 2) for some s > r. We
will deduce a contradiction. We consider two cases.

• Suppose first that σ2 also passes through x within the segment µ(r, 2). Since S is
free and liberal, σ2 also passes through some y ∈ F between the two mentioned
occurrences of x, such that the prefix of σ2τ up to the second occurrence of x ends
in a yx-segment. Thus the prefix of σ1 ending in x(t) also ends in a yx-segment,
and so the relevant occurrence of y is in µ(r′, 1) for some r′ ≤ r. We will show
that the result follows from the inductive hypothesis applied to the two occurrences
of y, which clearly define the same term along the two prefixes. If r′ < r, or the
relevant occurrence of y in σ2τ is along τ or in µ(s′, 2) for s′ > r, then this is
immediate. Thus we may assume that r′ = r and that y occurs in µ(s′, 2) for s′ ≤ r.
Clearly s′ = r since y occurs between the two occurrences of x. Since r′ = r,
y  passageS(qr ,Zr) x holds, so µ(r, 2) cannot pass through y after passing through x,
giving a contradiction and so proving the result.

• Alternatively, suppose that σ2 does not pass through x within the segment µ(r, 2).
Then there is an if predicate q such that q ցpassageS(qr,Zr) x (Z) and µ(r, 2) passes
through <q = ¬Z > and µ(r, 1) passes through <q = Z >. Thus Z = Y (q) by
Condition (2) of the hypotheses. Hence by Condition (1) of the hypotheses, x(t)
occurs along µ(s, 2) for some s > r; but this contradicts Condition (3) of the
hypotheses, thus proving the Lemma.

�

Lemma 89 Let S be a linear while-free schema, let c1, c2 be any states, let κ1 and κ2

be any interpretations and assume that the path πS(κ1, c1) passes through a predicate
term p(t) starting at c1, whereas πS(κ2, c2) does not pass through p(t) starting at c2.
Then either c1, c2 differ on a variable in InvS(p) or κ1 and κ2 differ on a predicate in
NS(p).

Proof. This is similar to Part (2) of Theorem 42 and uses induction on |S|. �

Theorem 90 Let S be an LFL schema and let p ∈ ifPreds(S) ∩ NS(ω). For each
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q ∈ ifPreds(S), let Y (q) ∈ {T, F}. Then there is a pω couple {i(1), i(2)} for S which is
(q, Y (q))-finite for every q ∈ ifPreds(S) and (q, T)-finite for every q ∈ whilePreds(S)
except one, for which bodyS(q) is while-free.

Proof. If p ∈ swhilePreds(S) then the result follows from Lemma 72, so we may as-
sume p /∈ swhilePreds(S). Thus since p ∈ NS(ω), there is an ω-dependence sequence
pw for p in S, with |w| ≥ 1. Let w′ be the shortest prefix of w containing a sym-
bol in swhilePreds(S). Applying Lemma 87 to pw′ shows that there are predicates
q1, . . . , qm ∈ swhilePreds(S) such that pq1Z1q2 . . . Zm−1qm is a qm-passage sequence
for p in S. We may assume that m is minimal for all q′ ∈ swhilePreds(S) such that a
q′-passage sequence for p in S exists. By the definition of a passage sequence there are
variables v1, . . . , vm such that vm ∈ RefsetS(qm) and vr ∈ InvpassageS(qr,Zr)(vr+1) for
1 ≤ r < m and p ∈ NpassageS(q0,Z0)(v1) for some passage passageS(q0, Z0) containing p.
We will define the p-couple {i(1), i(2)} such that for each k ∈ {1, 2} we have

πS(i(k), e) = σk,

where

σk = µ <q0 = Z0> µ(0, k) <q1 = Z1> . . . µ(m − 1, k) <qm = Xk> ρ(k)

for µ(r, k) ∈ passageS(qr, Zr) and such that each qr+1 = nextpredS(qr, Zr), and
M[[schema(τ(r, 1))]]e(vr) 6= M[[schema(τ(r, 2))]]e(vr) (where τ(r, k) is the prefix of
πS(i(k), e) preceding the given occurrence of qr), X1 6= X2, and the occurrence of
p at which the paths deviate is along µ(0, k) in passageS(q0, Z0). The path σ2 will
be the non-terminating one. We will be using Lemma 88 for τ = ρ(2) and will thus
need to ensure that the segments µ(r, k) satisfy the hypotheses of that Lemma. The
construction of the paths σk occurs in several stages.

• We first choose µ to be any prefix in S such that µ <q0 = T>∈ pre(Π(S)). We also
define the state c1

0 = c2
0 = M[[schema(µ)]]e.

• We then define each segment µ(0, k) as follows. By Proposition 83 and Part (2)
of Lemma 84 applied to the while-free linear schema passageS(q0, Z0), there is a
p-couple {κ1

0, κ
2
0} such that

M[[passageS(q0, Z0)]]
κ1
0

c1
0

(v1) 6= M[[passageS(q0, Z0)]]
κ2
0

c2
0

(v1),

and such that for every q ∈ ifPreds(passageS(q0, Z0)), if the path
πpassageS(q0,Z0)(κ

2
0, c

2
0) passes through <q = Y (q)>, then πpassageS(q0,Z0)(κ

1
0, c

1
0) does

not pass through <q = ¬Y (q)>. We define

µ(0, k) = πpassageS(q0,Z0)(κ
k
0, c

k
0).

We also define the states ck
1 = M[[passageS(q0, Z0)]]

κk
0

ck

0

.

• We now recursively define interpretations κs for 1 ≤ s < m, the segments µ(s, k) =
πpassageS(qs,Zs)(κs, c

k
s) for s < m and k ∈ {1, 2} and define ck

s+1 = M[[passageS(qs, Zs)]]
κs

ck
s

,
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such that
c1
s+1(vs+1) 6= c2

s+1(vs+1)

holds, and that the resulting segments µ(s, k) satisfy Condition (2) of Lemma 88
for r = s and all q ∈ ifPreds(passageS(qs, Zs)). Assume that this has been done for
all r < s. By Proposition 83 and Part (1) of Lemma 84 applied to the while-free
linear schema passageS(qs, Zs) and the variable vs+1, an interpretation κs, states
ck
s+1 and paths µ(s, k) exist satisfying the conditions above.

• We now modify each interpretation κs in several steps, in order that Condition (3)
of Lemma 88 is also satisfied, and to ensure that κs is consistent with the previously
defined interpretations. Again, we do this in order of increasing s.
Define ifPreds(passageS(qs, Zs)) = {p1, . . . , pa}, with the predicates ordered so that
pl <<passageS(qs,Zs) pl′ ⇒ l < l′. For each pl, with l in increasing order, we modify κs

with the following steps. Assume that for each l, each path µ(s, k) passes through
pl(tl,k) if it passes through pl.

(1) Suppose first that pl(tl,1) = Z is a consequence of µ(s, 1), whereas pl(tl,1) = ¬Z
is a consequence of µ(r, 2) for some r < s. Note that by the freeness of S this
implies tl,1 6= tl,2. We then replace κs by κs(pl(tl,1) = ¬Z). (We will consider later
the analogous situation with 1 and 2 interchanged.)

(2) Suppose next that µ(s, 2) passes through <pl = Y (pl)>, whereas for some r < s,
µ(r, 1) and µ(r, 2) pass through <pl = Y (pl)> and <pl = ¬Y (pl)> respectively. In
order that Condition (3) of Lemma 88 be satisfied, we replace κs by κs(pl(tl,2) =
¬Y (pl)). Note that this modification does not change the path µ(s, 1) unless
tl,1 = tl,2, so Step (1) does not become necessary as a result of this modification.

(3) As a consequence of the execution of Steps (1) or (2), it may be that for some
l′ ≥ l, Condition (2) of Lemma 88 for r = s and q = pl′ is no longer satisfied. If
so, we replace κs by κs(pl′(tl′,2) = ¬Y (pl′)). Again, if l′ = l then Step (1) need
not be executed again.

We now need to prove that these modifications to κs do not change the terms
ck
s+1(vs+1), as defined above, so that each κt for t > s still satisfies the conditions that

it was originally chosen to satisfy. Suppose this is not the case. If Step (1) or (2) is ex-
ecuted, then for the given value of r < s, passageS(qr, Zr) and passageS(qs, Zs) both
contain pl, hence passageS(qr, Zr) = passageS(qs, Zs). By Lemma 89 and (in the case
of Step (1)) the freeness of S, r = 0 ⇒ p ∈ NpassageS(qr,Zr)(pl) holds. If r ≥ 1 then
by induction on r − b and Part (2) of Theorem 42, there are variables {w1, . . . , wr}
such that the states ck

b differ on wb and each wb ∈ InvpassageS(qb,Zb)(wb+1) for b < r
and p ∈ NpassageS(q0,Z0)(w1) and wr ∈ InvpassageS(qr,Zr)(p1). Thus in either case
pq1 . . . qrZrpl is a pl-passage sequence for p in S.
If an execution of Step (1) or (2) changes a term ck

s+1(vs+1), then
pl ∈ NpassageS(qs,Zs)(vs+1) by Part (2) of Theorem 42; if an execution of Step (3)
changes a term ck

s+1(vs+1), then pl′ ∈ NpassageS(qs,Zs)(vs+1) by Part (2) of Theo-
rem 42, and since Step (3) was necessary, pl ∈ NpassageS(qs,Zs)(pl′) and so pl ∈
NpassageS(qs,Zs)(vs+1) holds. Hence r ≥ 1 ⇒ vr ∈ InvpassageS(qr,Zr)(vs+1) and r = 0 ⇒
p ∈ NpassageS(qr ,Zr)(vs+1) and so by Lemma 86,

pq1 . . . qrZrqs+1 . . . Zm−1qm
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is a qm-passage sequence for p in S, contradicting the minimality of m.
• We now define the segments <qm = Xk> ρ(k) for each k ∈ {1, 2}. For k = 2 this

segment will be infinite. If qm ∈ whilePreds(S) then we define X2 = T and X1 = F;
and if qm ∈ ifPreds(S) then we require that the X2-part of qm contain a while
predicate and X2 6= X1. The segment ρ(2) is defined as follows. If it meets an if
predicate q ∈ swhilePreds(S), then it enters a part of q containing a while predicate.
If it meets a while predicate q, it passes through <q = T>. And if it meets an if
predicate q /∈ swhilePreds(S), it passes through <q = ¬Y (q)>. Notice that ρ(2)
only passes finitely often through any super-while if predicate. The segment ρ(1)
is defined as follows. If it meets a while predicate q, it passes through <q = F>;
subject to that condition, it may take any path consistent with the prefix of σ2

preceding ρ(2). This clearly ensures that it terminates.

The path σ2 is clearly (q, Y (q))-finite for every q ∈ ifPreds(S), and there is only
one while predicate through which ρ(2) passes infinitely often. Thus to prove the
existence of the interpretations i(k) satisfying πS(i(k), e) = σk, it only remains to
show that there is no predicate term q(t) such that q(t) = X is a consequence of
σ1 and q(t) = ¬X is a consequence of σ2. We will assume otherwise and deduce a
contradiction.
Note that the segments ρ(k) do not pass through any common predicate, and so q(t)
occurs before ρ(k) for at least one k ∈ {1, 2}. Also, by the freeness of S, the ‘bad’
occurrences of q(t) cannot be in µ in either path. We consider three cases.

• Assume q /∈ swhilePreds(S). Assume q(t) = X is a consequence of a segment µ(r, 1)
whereas q(t) = ¬X is a consequence of µ(s, 2) for some r < s or of ρ(2) (by Step
(1) in the construction of κs, the same situation with 1 and 2 interchanged cannot
happen). Lemma 88, with ρ(2) used as the segment τ of that Lemma, shows that
this is impossible, since the segments µ(s, k) were constructed so as to satisfy the
hypotheses of Lemma 88.

• Assume q = qr for some r < m. Thus t = ck
r(refvecS(qr)) for some k ∈ {1, 2}, and

so by the freeness of S, we get

c1
r(refvecS(qr)) 6= c2

r(refvecS(qr))

for one such r. By induction on r−b and Part (2) of Theorem 42, there are variables
{w1, . . . , wr} with wr ∈ RefsetS(qr) and such that the states ck

b differ on wb and
each wb ∈ InvpassageS(qb,Zb)(wb+1) for each b < r and p ∈ NpassageS(q0,Z0)(w1). Thus
pq1 . . . qr−1Zr−1qr is a qr-passage sequence for p in S, contradicting the minimality
of m.

• Assume q = qm. If qm ∈ ifPreds(S), then neither segment ρ(k) passes through q, so
qm ∈ whilePreds(S) must hold. Since ρ(1) does not pass through qm in this case,
ρ(2) must pass through qm(t). By the freeness of S, ρ(2) must pass through some
f ∈ F defining a term f(t′) which is one of the components of t. Thus σ1 also
passes through f(t′) before ρ(1), contradicting Lemma 88.

�
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8 u-equivalence implies Conditions (2) and (3) of u-similarity

Theorem 96, in which we show that u-equivalent LFL schemas have the same sets
of u-needed if and while predicates, is the main result of this Section. Definition 91,
Lemma 93 and Corollary 95 will also be quoted in later Sections.

Definition 91 (preupdated and postupdated symbols) Let S be a linear
schema, let p ∈ whilePreds(S) and x ∈ Symbols (bodyS(p)) and assume
abovebodyS(p)(x) = x. We say that x is preupdated in S if every path through bodyS(p)
passing through x also passes through some g ∈ F satisfying g  bodyS(p) x, and
x is postupdated in S if every such path passes through some g ∈ F satisfying
backS(p, g, x).

Proposition 92 Let S be an LFL schema, let p ∈ whilePreds(S) and
x ∈ Symbols (bodyS(p)) and assume abovebodyS(p)(x) = x. Then x is either preupdated
or postupdated in S.

Proof. Let ρ = σlσ′ ∈ Π(bodyS(p)) with l ∈ alphabet(S) such that symbol(l) = x. If
suffices to show that ρ passes through some g ∈ F satisfying either g  bodyS(p) x or
backS(p, g, x). Since S is free, there is an interpretation defining a path through S of
which lσ′ <p = T> σl is a segment. The existence of an appropriate g ∈ F follows
from the freeness of S if x ∈ P and the liberality of S if x ∈ F . �

Lemma 93 Let S be an LFL schema and let p ∈ whilePreds(S). Let R be the set of
predicates lying immediately below p in S. For each predicate r ∈ R, let X(r) ∈ {T, F}
and assume that r ∈ whilePreds(S) ⇒ X(r) = T. Let x ∈ P∪F lie immediately below
p in S and assume that x does not lie in the X(r)-part of any if predicate r ∈ R.

(1) Then y  S(p) x for some y ∈ F and there is a yx-segment in S(p) which does
not contain any letter <r = X(r)> for r ∈ R.

(2) There is a gGgFx-segment in the while schema S(p) for g ∈ F and G, F ∈ F∗,
which does not contain any letter <r = X(r)> for r ∈ R.

Proof.

(1) Let σlσ′ ∈ Π(bodyS(p)) with l ∈ alphabet(S) such that symbol(l) = x and σ and
σ′ do not contain any letter <r = X(r)> for r ∈ R. If σl ends in a yx-segment
for some y ∈ F then we are done; otherwise x is not preupdated in S, and hence
by Proposition 92, x is postupdated in S and so the segment σ′ <p = T> σl in
S(p) ends in a in a yx-segment for some y ∈ F , as required.

(2) By Part (1) of this Lemma, and by induction on n, for every n > 0 there is
an Hx-segment in the while schema S(p) satisfying the condition given, with
|H| = n. Choosing n to be greater than the number of function symbols in S
gives the stated result.

62



�

Lemma 94 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let p ∈
whilePreds(S) and assume that there is a gGg-segment in the while schema S(p) for
g ∈ F ∩ NS(u) and G ∈ F∗, whose symbols all lie immediately below p in S. Then
p ∈ NS(u) ∩ whilePreds(T ) and g lies immediately below p in T .

Proof. Since g ∈ NS(u), there exists H ∈ F∗ such that S contains either a gHq-
segment for q ∈ P ∩ NS(u) or a gHu-segment with u ∈ V. We may assume the first
case; the second may be reduced to the first by using Lemma 27.
Let ḡ ∈ alphabet(S) be the assignment to g in S and let ḡ µ ḡµH <q = F> be a gGgHq-
segment in S such that the symbols of the segment ḡ µ ḡ lie immediately below p in
S. Let τ ∈ pre(Π(S)) be such that τ ḡ ∈ pre(Π(S)). Thus τ(ḡµ)nḡµH <q = F> is
a (gG)ngHq-prefix for every n > 0. Write σn = τ(ḡµ)nḡµH . Since q ∈ P ∩ NS(u),
we claim there is a qu-couple {i, j} for S which is (P − {q′}, T)-finite for some q′ ∈
whilePreds(S) if u = ω and (P, T)-finite if u ∈ V. If u ∈ V then this follows from Part
(1) of Lemma 74 and if u = ω then this follows from Part (2) of Lemma 74. Define

Pu =







P − {q′} u = ω

P u ∈ V.

Hence by Lemma 60, for each n > 0 there is a (Pu, T)-finite (gG)ngHqu-couple for
S whose common prefix in S is σn. For each n > 0, let {in, jn} be a (gG)ngHqu-
couple for S such that in is (Pu, T)-minimal. Observe that gradeS((ḡµ), r, T) = 0 for
all r ∈ whilePreds(S) − {p}. Thus by Lemma 60, the element

B(r, n) = grade(r, in, T)

is independent of n for all r ∈ P − {p}, and finite for all r ∈ Pu. Also, if p ∈ Pu

then {B(p, n)|n > 0} is an unbounded set of integers. On the other hand each set
{in, jn} is also a (gG)ngHqu-couple for T , by Proposition 57, and so similar results
can be shown using T . Thus g lies immediately below some p′ ∈ whilePreds(T ) and
B(r, n) is independent of n for all r ∈ P −{p′}; also, if p′ ∈ Pu then {B(p′, n)|n > 0}
is an unbounded set of integers. If p′ 6= p then choosing r ∈ {p, p′} ∩ Pu gives a
contradiction, thus proving the Lemma. �

Corollary 95 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let p ∈
whilePreds(S) and let the symbol x ∈ NS(u) satisfy either x = p or x lies immediately
below p in S. Then for g ∈ F and G, H ∈ F∗, there is a gGgHx-segment in the while
schema S(p), all of whose symbols apart possibly from x lie immediately below p in S
and such that g lies immediately below p in T .

Proof. This follows immediately from Lemmas 93, Part (2) and Lemma 94 and if
x = p, the fact that by the freeness of S there exists y ∈ F such that y  S p and y
lies immediately below p in S. �
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Theorem 96 (S ∼=u T implies conditions (2),(3) of u-similarity) Let
u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Then

NS(u) ∩ ifPreds(S) = NT (u) ∩ ifPreds(T )

and
NS(u) ∩ whilePreds(S) = NT (u) ∩ whilePreds(T )

hold.

Proof. Let p ∈ whilePreds(S)∩NS(u). By Corollary 95, p ∈ whilePreds(T )∩NS(u) =
whilePreds(T ) ∩NT (u). Thus

whilePreds(S) ∩ NS(u) ⊆ whilePreds(T ) ∩ NT (u)

and equality holds by interchanging S and T . By Theorem 75 we get NS(u) ∩
ifPreds(S) = NT (u) ∩ ifPreds(T ). �
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9 Relating outif , outwhile , thru and back in equivalent schemas

Theorem 103 and Theorem 105 are the main results of this section. Here we ob-
tain information about the relations given in the title of this Section by studying
(p, X)-minimal couples for suitably chosen (p, X), and by using Lemma 69 to infer
information about their heads.

Lemma 97 (grade of prefix) Let S be a linear schema and let
y ∈ Symbols (S). Let p ∈ Preds(S) and let X ∈ {T, F} and assume

p ∈ whilePreds(S) ⇒ X = T

holds. Then the following hold.

(1) If p ցS y (X) then every y-prefix µ in S satisfies
grade(µ, p, X) ≥ 1, and there exists such a prefix such that equality holds.

(2) If ¬(p ցS y (X)) holds then there exists a y-prefix µ such that
grade(µ, p, X) = 0.

Proof. Both parts are straightforward to prove. �

Lemma 98 (grade of segment) Let S be a linear schema and assume that f  S x
for some f ∈ F and x ∈ P ∪ F . Then the following hold:

(1) If p ∈ whilePreds(S) and x /∈ Symbols(bodyS(p)) then there exists a fx-segment
ν in S such that grade(ν, p, T) = 0.

(2) If p ∈ whilePreds(S) and either backS(p, f, x) or f /∈ Funcs(bodyS(p)) ∧ x ∈
Symbols (bodyS(p)) then every fx-segment ν in S satisfies
grade(ν, p, T) ≥ 1, and there exists such a segment for which equality holds.

(3) If p ∈ whilePreds(S) and f  bodyS(p) x then there exists a fx-segment ν in S
such that grade(ν, p, T) = 0.

(4) If p ∈ ifPreds(S), X ∈ {T, F} and outif S(p, X, f, x) and p ցS x (X), then every
fx-segment ν in S satisfies grade(ν, p, X) ≥ 1 and there exists such a segment
for which equality holds.

(5) If p ∈ ifPreds(S), X ∈ {T, F} and outif S(p, X, f, x)∧¬(p ցS x (X)) holds, then
there exists an fx-segment ν in S satisfying grade(ν, p, X) = 0.

Proof. All parts are straightforward to prove. �

Definition 99 (the indexS function) Let S be an LFL schema, let u ∈ V∪{ω} and
let q ∈ Preds(S) ∩NS(u). For any word G ∈ F∗ such that S contains a Gq-segment,
and X ∈ {T, F} and r ∈ Preds(S), let

indexS(Gqu, r, X) ∈ N ∪ {∞}
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be the minimal element of

{grade(I, X, r)| I is a Gqu-couple for S},

provided this set is nonempty; otherwise indexS(Gqu, r, X) is undefined.

Observe that if S ∼=u T then indexS(Gqu, r, X) = indexT (Gqu, r, X) by Proposition
57, provided one side is defined.

Lemma 100 Let S be an LFL schema and u ∈ V ∪ {ω} and let p, q ∈ Preds(S) and
assume q ∈ NS(u). Let X ∈ {T, F}. Let f ∈ F and F ∈ F∗, and assume that S
contains an fFq-segment and let µ(F ), µ(fF ) be prefixes such that µ(F ) <q = Z>
and µ(fF ) <q = Z> are (p, X)-minimal Fq- and fFq-prefixes in S for Z ∈ {T, F}.
Then

indexS(fFqu, p, X)− indexS(Fqu, p, X) = grade(µ(fF ), p, X)− grade(µ(F ), p, X)

holds provided all expressions are finite.

Proof. Assuming that indexS(fFqu, p, X) and indexS(Fqu, p, X) are defined, by Lemma
69 and Lemma 60 there are (p, X)-minimal Fq- and fFq-couples I and J respectively
with headS(I) = µ(F ) and headS(J) = µ(fF ). We must have

|
⋃

k∈I

TailtermsS(p, X, k, I)| = |
⋃

k∈J

TailtermsS(p, X, k, J)|,

since otherwise we could construct a new couple with the tails of one element of {I, J}
and the head of the other, contradicting the (p, X)-minimality of I or J . Thus the
result follows from Proposition 68. �

Lemma 101 Let S be an LFL schema and assume that there is a (p, X)-finite fFqu-
couple for S for some u ∈ V ∪ {ω}, f ∈ F , F ∈ F∗, X ∈ {T, F} and p, q ∈ P. Let
x be the first letter in the word Fq. Then the following hold, provided that the index
function defines a natural number in each case.

(1) If p ∈ whilePreds(S), X = T and outwhileS(p, f, x) ∨ backS(p, f, x) then

indexS(Fqu, T, p) + 1 = indexS(fFqu, T, p)

holds.
(2) If p ∈ whilePreds(S), X = T and either f  bodyS(p) x or f does not lie in

bodyS(p), then indexS(Fqu, T, p) = indexS(fFqu, T, p).
(3) If p ∈ ifPreds(S) and outif S(p, X, f, x) ∨ thruS(p, X, f, x), then

indexS(Fqu, X, p) + 1 = indexS(fFqu, X, p)

holds.
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(4) If p ∈ ifPreds(S) and either f  partX
S

(p) x or there exists an fx-segment in S
not containing the letter <p = X>, then

indexS(Fqu, X, p) = indexS(fFqu, X, p).

Proof. For notational convenience we will assume x 6= q. Write Fq = xF ′ and let
µ(fF ) be a segment in S such that µ(fF ) <q = Z> is a (p, X)-minimal fFq-prefix in
S. Thus we may write µ(fF ) = µ1f̄µ2x̄µ2, where f̄ and x̄ are the assignments in S to
f and x, µ1f̄ is a (p, X)-minimal f -prefix in S, f̄µ2x̄ is a (p, X)-minimal fx-segment in
S and x̄µ2 <q = Z> is a (p, X)-minimal F ′-segment in S. Let τ x̄ be a (p, X)-minimal
x-prefix in S. Thus by Lemma 100, indexS(fFq, v, p, X) − indexS(Fq, v, p, X) =
grade(µ1f̄µ2x̄µ2, p, X) − grade(τ x̄µ2, p, X) and so the results follow from Lemma 97
applied to the prefixes τ f̄ and µ1x̄ and Lemma 98 applied to the fx-segment f̄µ2x̄.
�

Lemma 102 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let p ∈
whilePreds(S) and assume that there is a predicate q ∈ NS(u) such that there is a
(p, T)-finite qu-couple for S and that S contains an fFq-segment for f ∈ F and
F ∈ F∗. Let x be the first letter of Fq. Then

(outwhileS(p, f, x) ∨ backS(p, f, x)) ⇐⇒ (outwhileT (p, f, x) ∨ backT (p, f, x))

holds.

Proof. Clearly indexS(Gq, u, p, T) is finite for all G ∈ F∗. If

outwhileS(p, f, x) ∨ backS(p, f, x)

holds then
indexS(Fq, u, T, p) + 1 = indexS(fFq, u, T, p)

and thus
indexT (Fq, u, T, p) + 1 = indexT (fFq, u, T, p)

holds. Since the conclusion of Part (2) in Lemma 101 is thus false for T we get
f ∈ Funcs(bodyT (p)) and ¬(f  bodyT (p) x); and so outwhileT (p, f, x) ∨ backT (p, f, x)
holds. The converse follows similarly. �

Theorem 103 Let u ∈ V ∪{ω} and let S, T be u-equivalent LFL schemas.Let f ∈ F
and x ∈ NS(u) ∪ ({u} ∩ V). Let p ∈ whilePreds(S). Then

(outwhileS(p, f, x) ∨ backS(p, f, x))

⇐⇒

(outwhileT (p, f, x) ∨ backT (p, f, x))

holds provided that at least one of the following conditions holds.
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(1) u ∈ V.
(2) u = ω and there exists p′ ∈ whilePreds(S) − {p} such that x ∈ NS(p′).
(3) u = ω and bodyS(p) is not while-free.

Proof.

(1) We may assume that x ∈ Symbols (S) and there is a predicate q ∈ NS(u) such
that either x = q or S contains an xFq-segment for some F ∈ F∗; if this is false,
then S contains an F -segment for some F beginning with x and ending with u,
and so Lemma 27 may be used to eliminate this case. Thus the conclusion follows
from Lemma 102 and Lemma 74, Part (1).

(2) The conclusion follows from Lemma 102 and Lemma 74, Part (2).
(3) Clearly for some p′ ∈ whilePreds(S) we have x ∈ NS(p′). If p′ 6= p then the

conclusion follows from Part (2) of this Theorem. If p = p′, let q be a while
predicate in the body of p. Then x ∈ NS(q) and q 6= p holds, so again the
conclusion follows from Part (2) of this Theorem.

�

We will later prove that the three conditions given in Theorem 103 are unnecessary
(Theorem 127).

Corollary 104 Let S, T be u-equivalent LFL schemas for u ∈ V ∪ {ω} and let p ∈
whilePreds(S) ∩ NS(u) and f ∈ F . Then

outwhileS(p, f, p) ⇐⇒ outwhileT (p, f, p)

holds.

Proof. Assume that outwhileS(p, f, p) holds. By Theorem 75, to show
outwhileT (p, f, p) it suffices to prove that f ∈ Funcs(bodyT (p)). If u ∈ V or there
exists p′ ∈ whilePreds(S) − {p} such that p ∈ NS(p′), or there is a while predicate in
the body of p in S, then the result follows from Theorem 103. Thus we may assume
that these conditions are all false. Hence u = ω and there is no while predicate in the
body of p in S, so f lies immediately below p in S. By Lemma 93, Part (2), there is
a gGgHf -segment in the body of p in S, for g ∈ F and G, H ∈ F∗. Thus if ab is a
2-letter subword of gGgHf , then

¬(outwhileS(p′, a, b) ∨ backS(p′, a, b))

holds for every p′ ∈ whilePreds(S)−{p}. By Theorem 75, T also contains a gGgHfp-
segment; and if ab is a 2-letter subword of gGgHfp, then by Theorem 103, Part
(2),

¬(outwhileT (p′, a, b) ∨ backT (p′, a, b))

holds for every p′ ∈ whilePreds(S)−{p}. Thus g cannot lie immediately below a while
predicate p′ 6= p in T ; but g must lie in the body of a while predicate in T , otherwise
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the gGg-segment in T could not exist. Hence g ∈ Funcs(bodyT (p)). Assume that
f /∈ Funcs(bodyT (p)). Thus there is a gHfp-segment in T which starts in the body of
p, leaves the while schema T (p), and then returns to p. Thus p lies immediately below
a while predicate p′ in T , and

outwhileT (p′, a, b) ∨ backT (p′, a, b)

holds for some 2-letter subword ab of gGgHfp, giving a contradiction. Thus

outwhileS(p, f, p) ⇒ outwhileT (p, f, p)

follows and the converse holds similarly. �

Theorem 105 (u-equivalence implies Condition (10) of u-similarity) Let
u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Suppose that f  S x for
some f ∈ F and x ∈ NS(u) ∪ ({u} ∩ V). Let p ∈ ifPreds(S) and Y ∈ {T, F}. Then
(outif S(p, Y, f, x) ∨ thruS(p, Y, f, x)) ⇐⇒ (outif T (p, Y, f, x) ∨ thruT (p, Y, f, x)).

Proof. This is similar to Theorem 103, using Parts (3) and (4) of Lemma 101. If u = ω
then Theorem 90 must be used; otherwise Part (1) of Lemma 74 may be used. �
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10 External and internal Grades

Theorem 109 and Lemma 117 are the main results of this section. In order to strengthen
Theorems 103 and 105, we need to refine the notion of the grade of a prefix and an
interpretation.

Definition 106 (external and internal predicate terms) Let S be a linear
schema and let p ∈ whilePreds(S) and let p(t) be a predicate term. Then we say that
p(t) is S-external if no component of t is an f -term for any f ∈ F lying in the body
of p in S. We also say that p(t) is S-internal if it is not S-external.

Definition 107 (external and internal grade of a prefix of a schema) Let S
be a linear schema, let p ∈ P, X ∈ {T, F} and let µ ∈ pre(Π(S)). We define

gradeS(µ, p, X, EXT ) ∈ N ∪ {∞}

to be the number of S-external predicate terms p(t) for which µ has a prefix

µ′ <p = X>

such that
M[[schema(µ′)]]e(refvecS(p)) = t.

We define gradeS(µ, X, INT ) similarly using S-internal instead of S-external.

Definition 108 (external and internal grade of interpretations)
Let i be an interpretation, let S be an LFL schema and let p ∈ whilePreds(S) and
X ∈ {T, F}. Then gradeS(i, p, X, EXT ) ∈ N ∪ {∞} is the number of S-external
predicate terms p(t) for which pi(t) = X. We define gradeS(i, p, X, INT ) similarly
using S-internal instead of S-external. If I is a pu-couple for some u ∈ V ∪ {ω}, then
gradeS(I, p, X, INT ) is the minimal element of {gradeS(i, p, X, INT )| i ∈ I}.

Observe that the schema S is a parameter of the external or internal grade (as distinct
from the standard grade, as in Definitions 61 and 62, in which S is not a parameter); a
predicate term p(t) may be external with respect to one schema, but not with respect
to another. However Theorem 109 qualifies this.

Theorem 109 (u-equivalence implies same external predicate terms) Let S, T
be u-equivalent LFL schemas for u ∈ V ∪ {ω} and let
p ∈ whilePreds(S) ∩ NS(u). Then a predicate term p(t) is S-external if and only if
p(t) is T -external.

Proof. This follows from Corollary 104. �

Definition 110 (external and internal terms of a couple) Let S be an LFL
schema, let u ∈ V ∪ {ω}, and let p ∈ whilePreds(S) and q ∈ Preds(S). Let I be a
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qu-couple for S and let k ∈ I and Y ∈ {T, F}. Then we define

TailtermsS(p, k, INT, I)

to be the set of S-internal predicate terms in TailtermsS(p, k, I) and
TailtermsS(p, Y, INT, k, I) to be the set of S-internal predicate terms in

TailtermsS(p, Y, k, I).

We define TailtermsS(p, Y, EXT, k, I), HeadtermsS(p, Y, INT, k, I) and
HeadtermsS(p, Y, EXT, k, I) similarly.

Proposition 111 (computing the internal (p, X)-grade of a couple) Let S be
an LFL schema, let q ∈ Preds(S) and p ∈ whilePreds(S), let X ∈ {T, F}, let u ∈
V ∪ {ω} and let I = {i, j} be an (S, p, X)-normalised qu-couple for S. Let m =
gradeS(I, p, X, INT ). Then

m = gradeS(headS(I), p, X, INT ) + |
⋃

k∈I

TailtermsS(p, X, INT, k, I) |

holds provided both sides are finite. A similar statement holds for external predicate
terms.

Proof. This follows immediately from the freeness of S. �

Proposition 112 is easily shown.

Proposition 112 (identifying internal predicate terms)
Let S be a linear schema and let p ∈ whilePreds(S), X ∈ {T, F} and

µ <p = X> ∈ pre(Π(S)).

Then the predicate term

p(M[[schema(µ)]]e(refvecS(p)))

is S-internal if and only if µ <p = X> is an fp-prefix for some f ∈ Funcs(bodyS(p)).
�

Lemma 113 Let S be a free linear schema, let p ∈ whilePreds(S) and let

ρ1σ, ρ2σ ∈ pre(Π(S)).

Assume that ρ2 does not pass through <p = T>.

(1) If the prefix ρ1 also does not pass through <p = T>, then

gradeS(ρ1σ, p, F, INT ) = gradeS(ρ2σ, p, F, INT )
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holds.
(2) If the prefix ρ1 contains at least one occurrence of <p = F> after an occurrence

of <p = T>, then

gradeS(ρ1σ, p, F, INT ) > gradeS(ρ2σ, p, F, INT )

holds.
(3) If every occurrence of <p = F> in ρ1 is immediately preceded by a path through

bodyS(p), then

gradeS(ρ1σ, p, F, EXT ) ≤ gradeS(ρ2σ, p, F, EXT ).

If in addition ρ2 contains at least one occurrence of <p = F>, then the inequality
is strict.

Proof. This follows easily from Proposition 112 and the fact that since S is free,
any path in Π(bodyS(p)) ends in an fv-segment for some f ∈ Funcs(bodyS(p)) and
v ∈ RefsetS(p). �

Lemma 114 Let S be an LFL schema, let u ∈ V ∪ {ω}, let p ∈ whilePreds(S) and
q ∈ Preds(S) and let I be a (p, F)-finite, (S, p, F)-normalised qu-couple for S. Suppose
that headS(I) = ρσ, for a prefix ρ which does not pass through <p = T>.

(1) Let J ′ be a (p, F)-finite, (S, p, F)-normalised qu-couple for S obtained from I
by replacing headS(I) by a prefix ρ′σ such that ρ′ also does not pass through
<p = T>. Then

gradeS(I, p, INT, F) = gradeS(J ′, p, INT, F)

holds.
(2) Let J ′′ be a (p, F)-finite, (S, p, F)-normalised qu-couple for S obtained from I by

replacing headS(I) by a prefix ρ′′σ such that ρ′′ contains at least one occurrence
of <p = F> after an occurrence of <p = T>, then

gradeS(I, p, INT, F) < gradeS(J ′′, p, INT, F)

holds.
(3) Assume that J ′′′ is a (p, F)-finite, (S, p, F)-normalised qu-couple for S obtained

from I by replacing headS(I) by a prefix ρ′′′σ such that every occurrence of <p =
F> in ρ′′′ is immediately preceded by a path through bodyS(p), then

gradeS(J ′′′, p, EXT, F) ≤ gradeS(I, p, EXT, F)

holds, with strict inequality if ρ contains at least one occurrence of <p = F>.

Proof. In Case (1), it suffices just to show gradeS(I, p, INT, F) ≤
gradeS(J ′, p, INT, F), since the other inequality follows by interchanging I and J ′.
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The statements

gradeS(headS(I), p, F, INT ) ≤ gradeS(headS(J ′), p, F, INT ),

gradeS(headS(I), p, F, INT ) < gradeS(headS(J ′′), p, F, INT )

and

gradeS(headS(J ′′′), p, F, EXT ) ≤ gradeS(headS(I), p, F, EXT )

(with strict inequality in the last case under the conditions given) follow immediately
from the appropriate part of Lemma 113. By Proposition 111, it suffices to show that

|
⋃

k∈I

TailtermsS(p, F, INT, k, I) | ≤ |
⋃

k∈I

TailtermsS(p, F, INT, k, J ′) |,

|
⋃

k∈I

TailtermsS(p, F, INT, k, I) | ≤ |
⋃

k∈I

TailtermsS(p, F, INT, k, J ′′) |,

and

|
⋃

k∈I

TailtermsS(p, F, EXT, k, J ′′′) | ≤ |
⋃

k∈I

TailtermsS(p, F, EXT, k, I) |

hold. Observe that by Lemma 67, the last inequality is implied by

|
⋃

k∈I

TailtermsS(p, F, INT, k, I) | ≤ |
⋃

k∈I

TailtermsS(p, F, INT, k, J ′′′) |.

Let p(t) ∈ TailtermsS(p, F, INT, k, I); then

θS,p,F,I,J(p(t)) ∈ TailtermsS(p, F, INT, k, J)

holds for all J ∈ {J ′, J ′′, J ′′′}, using Proposition 112, the definition of θS,p,F,I,J , and
the fact that the prefix ρ does not pass through <p = T>. Thus the results follow
from the injectivity of θS,p,F,I,J . �

Proposition 115 is easily shown.

Proposition 115 Let S be a linear schema and let q ∈ whilePreds(S) be such that
bodyS(q) is while-free and let µ be a path through S which is (p, T)-finite for every
p ∈ whilePreds(S) − {q}. Then µ is (p, F)-finite for every p ∈ whilePreds(S). �

Corollary 116 Let S be an LFL schema, u ∈ V ∪{ω} and let q ∈ Preds(S)∪NS(u).
For each p ∈ ifPreds(S) let Y (p) ∈ {T, F}. Let R ⊆ whilePreds(S). Then there is a
qu-couple for S which is (p, Y (p)-finite for every p ∈ ifPreds(S), is (p, F)-finite for
every p ∈ R and is (p, T)-finite for every p ∈ whilePreds(S) − R except at most one,
whose body in S is while-free.
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Proof. If u ∈ V then this follows from Part (1) of Lemma 74, since the paths defined
by a qu-couple for S are finite. If u = ω then the result follows from Proposition 115
and Theorem 90 (if q ∈ ifPreds(S)) or Lemma 72 (if q ∈ whilePreds(S)). �

Lemma 117 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Suppose
that f  S x for some f ∈ F and x ∈ NS(u). Let p ∈ whilePreds(S). If

x /∈ Symbols(bodyS(p)) ∪ Symbols (bodyT (p)),

then
outwhileS(p, f, x) ⇐⇒ outwhileT (p, f, x)

holds.

Proof. We may assume that p 6= x; otherwise the Lemma follows from Corollary 104.
Also we may assume that u = ω, otherwise the Lemma follows from Part (1) of
Theorem 103. We will assume that outwhileS(p, f, x) ∧ ¬outwhileT (p, f, x) holds and
deduce a contradiction; the converse may be proved similarly. Since x ∈ NS(ω), there
is an Fq-segment in S and T for some F ∈ F∗ and q ∈ P ∩ NS(ω), such that x is
the first letter of Fq. By Corollary 116 there is a (p, F)-finite Fq-couple for T . Let
I be an Fq-couple for T for which gradeT (I, p, F, INT ) is minimal, and such that
grade(I, p, F) is minimal for all such Fq-couples for T .
Write headT (I) = ρσ, where σ <q = T> is an Fq-segment. By Lemma 60 there is a
(T, p, F)-normalised fFq-couple J ′ for T obtained by replacing headT (I) by a prefix
ρ′σ such that headT (J ′) <q = T> is an fFq-segment in T ; since outwhileT (p, f, x) is
false, we may assume that ρ′ does not pass through <p = T>. By Lemma 114, Parts
(1) and (2), we get

gradeT (J ′, p, F, INT ) ≤ gradeT (J, p, F, INT ).

We now get a contradiction by looking at S. Assume that outwhileS(p, f, x) holds.
Clearly headS(J ′) <q = T> is an fFq-segment, so we may write headS(J ′) = ντ ,
where τ <q = T> is an Fq-segment and thus begins with x. Since outwhileS(p, f, x)
holds and p 6= x, the prefix ν passes through f (and hence <p = T>) before passing
through <p = F>. By Lemma 60 there is an (S, p, F)-normalised Fq-couple J ′′ for S
obtained from J ′ by replacing ν with a prefix which does not pass through <p = T>.
Hence

gradeS(J ′′, p, F, INT ) < gradeS(J ′, p, F, INT )

holds by Lemma 114, Part (2). By Theorem 109 and the first inequality above we get
gradeS(J ′′, p, F, INT ) < gradeS(J, p, F, INT ), contradicting the minimality condition
on J . This proves the Lemma. �
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11 u-equivalence implies Conditions (7) and (8) of u-similarity

Theorem 126, in which we show that the set of symbols lying below a u-needed while
predicate is preserved by u-equivalence for LFL schemas, and Theorem 118, giving a
similar result for while predicates lying under predicates if u = ω, are the main results
of this section.

Theorem 118 (ω-equivalence implies condition (7) of ω-similarity) Let S and
T be ω-equivalent LFL schemas. Then

p′ ցS p (Z) ⇐⇒ p′ ցT p (Z)

holds if p ∈ whilePreds(S) and p′ ∈ Preds(S) and Z ∈ {T, F}.

Proof. Assume that ¬(p′ ցS p (Z)) holds. We may assume that p′ 6= p, else the
conclusion is obvious. By Lemma 72 there is a pω-couple {i, j} for S (and hence
T ) such that πS(j, e) terminates and p′i(t) = ¬Z for all vector terms t, and i is
(q, T)-finite for every q ∈ whilePreds(S) − {p′}. If p′ ցT p (Z) holds, then these
conditions and Theorem 96 imply that πT (i, e) terminates, giving a contradiction.
Thus ¬(p′ ցT p (Z)) holds, and the converse follows similarly. �

As the two v-equivalent LFL schemas below show, Theorem 118 cannot be generalised
to the case where a variable v replaces ω, even if p ∈ NS(v) holds.

while p(u) do u :=k(u);

if p′(w) then v := f(u);

if p′(w) then

{

while p(u) do u :=k(u);

v := f(u);

}

Lemma 119 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let p, q ∈
whilePreds(S) ∩ NS(u) and assume that q lies immediately below p in S.

(1) Assume that p lies in the body of a while predicate r in T . Then q also lies in
bodyT (r); in particular, q 6= r.
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(2) If outwhileS(q, f, x)) holds for some symbol x ∈ NS(u) lying in both bodyS(p) and
bodyT (p), then q lies in bodyT (p).

Proof. We may assume that u ∈ V, since if u = ω then both parts of this lemma
follow from Theorem 118. Observe first that by Corollary 95, for some F ∈ F∗ and
g ∈ Funcs(bodyS(p)) ∩ Funcs(bodyT (p)) there is a gFq-segment in S and hence T
whose symbols all lie immediately below p in S.

(1) Clearly r 6= p. Thus outwhileS(r, a, b) ∨ backS(r, a, b) is false for any subword ab
of gFq. Thus if p lies in bodyT (r), then also q lies in bodyT (r), since otherwise
outwhileT (r, a, b) would hold for some subword ab of gFq, contradicting Theorem
103, Part (1).

(2) Assume that the conclusion is false. Suppose that p lies immediately below T ;
then the existence of a gFq-segment in T implies p <<T aboveT (q). But since
q ∈ NS(u), Lemma 74 and Lemma 60 imply that there is a qu-couple {i, j} for
T (and hence S) satisfying pi(t) = pj(t) = F for all t, clearly contradicting q ∈
Preds(bodyS(p)). Thus p lies immediately below a while predicate r in T , whose
body in T also contains q, by Part (1) of the present Lemma. If ¬(p <<bodyT (r)

abovebodyT (r)(q)) holds, then backT (r, a, b) would hold for some subword ab of gFq,
which is impossible by an argument similar to that used in the proof of Part (1) of
the present Lemma. Hence p <<bodyT (r) abovebodyT (r)(q) holds and so backT (r, f, x)
follows. But then outwhileS(r, f, x) ∨ backS(r, f, x) holds by Theorem 103, parts
(1) and since abovebodyS(p)(f) = q holds by the hypotheses, the predicate r lies
in bodyS(q). Since p lies immediately below r in T , by Corollary 95 there is a
g′F ′p-segment in T for F ′ ∈ F∗ and g′ ∈ Funcs(bodyS(r)∩Funcs(bodyT (r) whose
symbols all lie immediately below r in T . Thus outwhileT (q, a, b) ∨ backT (q, a, b)
is false for any subword ab of g′F ′p. This statement also holds in S, by Theorem
103, part (1) and this contradicts the fact that r lies in bodyS(q) whereas p does
not. Thus q lies in bodyT (p) as required.

�

Corollary 120 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let
r1, . . . , rn ∈ whilePreds(S) ∩ NS(u). Assume that each ri lies immediately below ri+1

in S. If a symbol x lies in each bodyT (ri), then each ri lies in bodyT (ri+1).

Proof. Let i < n. Since bodyT (ri) and bodyT (ri+1) have a common symbol, one element
of the set {ri, ri+1} lies in the body of the other in T . Since abovebodyS(ri+1)(ri) = ri

holds, we get ri+1 ցT ri from Lemma 119, Part (1). �

Corollary 121 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let
z ∈ NS(u). Assume that p ցS z ⇐⇒ p ցT z for all p ∈ whilePreds(S). Then the
while predicates containing z in their bodies are nested in the same order in S as in
T .
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Proof. This follows immediately from Corollary 120. �

Lemma 122 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Suppose
that f  S x for f ∈ F and x ∈ NS(u). Assume that r ցS x ⇐⇒ r ցT x for all
r ∈ whilePreds(S). Then r ցS f ⇐⇒ r ցT f for all r ∈ whilePreds(S).

Proof. Let r ∈ whilePreds(S). Suppose that r ցS f . We will show that r ցT f . The
result then will follow by interchanging S and T . We consider two cases separately.
Assume first that the symbol x does not lie in the body of r in S (or T , by hypothesis).
Here outwhileS(r, f, x) holds and so by Lemma 117 outwhileT (r, f, x) holds. Thus
r ցT f holds.
Now assume instead that the symbol x ∈ Symbols (bodyS(r)) and hence

x ∈ Symbols(bodyT (r)).

By Corollary 120, we may assume that r lies immediately above {f, x} in S. Suppose
first that abovebodyS(r)(f) = q 6= f . By the assumption just made, bodyS(q) does
not also contain x. Thus bodyT (q) contains f by the first case applied to q, and
bodyT (r) contains q and hence f by Lemma 119, Part (2). Thus we may assume that
abovebodyS(r)(f) = f . By Corollary 95 there is a yFf -segment in bodyS(r) for F ∈ F∗

and y ∈ Funcs(bodyS(r)) ∩ Funcs(bodyT (r)), such that the symbols in the word yFf
all lie immediately below r in S. Thus the word yFfx does not contain a subword ab
for which outwhileS(r′, a, b) ∨ backS(r′, a, b) holds for any while predicate r′ 6= r. On
the other hand x and y both lie in bodyT (r), so if f does not, then yFfx contains
a subword ab for which outwhileT (r′, a, b) ∨ backT (r′, a, b) holds if r′ lies immediately
above r in T . This contradicts Theorem 103 applied to T and r′, since r′ contains a
while predicate in its body in T . �

Lemma 123 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let Y ∈
{T, F}. Suppose that an if predicate q ∈ NS(u) lies immediately below a while predicate
p in S. Then ¬(q ցT p (Y )) holds.

Proof. Since q lies immediately below p in S, by Corollary 95 there is a yFq-segment
in S(p) for F ∈ F∗ and y ∈ Funcs(bodyS(p))∩Funcs(bodyT (p)) such that all symbols
in the word yFq lie immediately below p in S. Thus the word yFq does not contain
a subword ab for which outwhileS(r, a, b)∨ backS(r, a, b) holds for any while predicate
r 6= p. On the other hand if q ցT p (Y ) holds, then the yFq-segment in T begins
and ends at the if schema T (q) and so outwhileT (r, a, b) ∨ backT (r, a, b) must hold
for a subword ab of yFq and the while predicate r lying immediately above q in T ,
contradicting Theorem 103, parts (1) or (3). �

Lemma 124 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let X ∈
{T, F}. Suppose that outif S(q, X, f, x) ∨ thruS(q, X, f, x) for f ∈ F and x ∈ NS(u) ∪
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({u} ∩ V) and q ∈ ifPreds(S). Then there exists f ′ ∈ F and Y ∈ {T, F} such that
outif T (q, Y, f ′, x).

Proof. This follows immediately from Theorem 105 and Proposition 31. �

Lemma 125 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let X ∈
{T, F}, f ∈ F , x ∈ NS(u) ∪ ({u} ∩ V) and q ∈ ifPreds(S). Suppose that
outif S(q, X, f, x)∨thruS(q, X, f, x) holds and assume that all members of the set {x}∪
{g ∈ F| g  S x} lie in the bodies of the same set of while predicates in S as in T .
Then q lies immediately below a while predicate p in S if and only if q lies immediately
below p in T .

Proof. We will assume that q lies immediately below p in S, and prove that q lies
immediately below p in T ; the converse follows immediately from Theorem 105.
In order to show this, by Lemma 124 we may assume that outif S(q, X, f, x) holds.
We first show that p ցT q holds, and to do this we consider two cases separately.
Suppose that p ցS x. Observe that outif T (q, X, f, x) ∨ thruT (q, X, f, x) holds by
Theorem 105. If thruT (q, X, f, x) holds, then since f and x both lie in bodyS(p) and
hence bodyT (p), the predicate q also does. If
outif T (q, X, f, x) holds, then q ցT f (X) holds and since p ցT f holds, either
p ցT q, or q ցT p (X) holds. By Lemma 123 the latter is impossible, so the former
holds.
Now assume instead that ¬(p ցS x) holds. Thus ¬(p ցT x) ∧ (p ցT f) holds
by the hypotheses. Assume that ¬(p ցT q) holds; then since q ցT p (X) is false
by Lemma 123, clearly ¬(outif T (q, X, f, x)) holds, and so thruT (q, X, f, x) follows
from Theorem 105. Thus outif T (q,¬X, f ′, x) for some f ′ ∈ F . Thus q ցT f ′ and
so ¬(p ցT f ′) and hence ¬(p ցS f ′) hold. But outif T (q,¬X, f ′, x) also implies
outif S(q,¬X, f ′, x) ∨ thruS(q,¬X, f ′, x) by Theorem 105, contradicting the fact that
bodyS(p) contains q, but not f ′ or x. Thus p ցT q holds.
Having shown p ցT q, we now show that abovebodyT (p)(q) = q. If this is false, then q
lies immediately below a while predicate p′ in T with p ցT p′. By Lemma 124 there
exists f ′ ∈ F satisfying the same hypotheses given in the present Lemma for f . Thus
p′ ցS q holds by using the argument above with f, p and S replaced by f ′, p′ and
T . Since q lies immediately below p in S, we get p′ ցS p. However this reversal of
the nesting of p and p′ contradicts Lemma 119 applied to p′ and q in T , using p for r,
thus proving abovebodyT (p)(q) = q. �

Theorem 126 (u-equivalence implies Condition (8) of u-similarity) Let
u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let x ∈ NS(u). Then p ցS

x ⇐⇒ p ցT x holds for all p ∈ whilePreds(S).

Proof. Let xw be a u-dependence sequence for x in S. We will prove the result using
induction on |w|. If |w| = 0 then u = ω and x ∈ whilePreds(S) and so the result
follows from Theorem 118. Thus we may assume that |w| ≥ 1.
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If x ∈ F then either the first letter of w is y ∈ NS(u), in which case the Theorem
follows from Lemma 122 and the inductive hypothesis, or it is u ∈ V, in which case
the Theorem follows from Part (1) of Theorem 103.
If x ∈ whilePreds(S), then x ցS z for some z ∈ NS(u) occurring in w. By the
inductive hypothesis applied to z, we have x ցT z. If also p ցS x for some
p ∈ whilePreds(S) then p ցS z and so p ցT f hold by the inductive hypothe-
sis applied to z. By Corollary 121 we get p ցT x. If on the other hand ¬(p ցS x)
holds, we must consider two cases. If ¬(p ցS z) holds, then ¬(p ցT z) holds by the
inductive hypothesis applied to z; but since x ցT z we get ¬(p ցT x). If p ցS z
holds, then since ¬(p ցS x) ∧ (x ցS z) holds we get x ցS p. By Corollary 121
and the inductive hypothesis applied to z, we get x ցT p, and so ¬(p ցT x) holds.
Lastly we consider the case where x ∈ ifPreds(S). Suppose that x ցS f holds for
some f ∈ F occurring in w, and f is the last such function symbol in w. Let z be the
symbol after f in w. Clearly f  S z holds. By Lemma 125 and the inductive hypoth-
esis applied to any f ′ ∈ F satisfying f ′

 S z, a while predicate p lies immediately
above x in S if and only if p lies immediately above x in T . Thus the general result
follows from Corollary 121 applied to f .
If no such such function symbol f occurs in w, then u = ω and x ցS q holds for
some q ∈ whilePreds(S), and so the result follows from Theorem 118. �

Observe that Theorem 126 implies that if S and T are u-equivalent LFL schemas, and
q ∈ whilePreds(S)∩NS(u), then aboveS(x) = aboveT (x) for all x ∈ bodyS(q)∩NS(u).
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12 u-equivalence implies Condition (9) of S similu T

Theorem 127 shows that the conclusion of Theorem 103 holds even without the three
conditions listed in that Theorem; thus the relation backS(p, f, x) for u-needed symbols
is always preserved by u-equivalence.

Theorem 127 (u-equivalence implies Condition (9) of u-similarity) Let
u ∈ V∪{ω} and let S, T be u-equivalent LFL schemas. Let p ∈ Symbols (whilePreds(S))
and x ∈ NS(u). Then

backS(p, f, x) ⇐⇒ backT (p, f, x)

holds.

Proof. We may assume that u = ω and that bodyS(p) is while-free; otherwise the
result follows from Theorem 103 and Theorem 126. By Theorem 126 we get p ∈
Symbols (whilePreds(T )). Suppose that ¬(backS(p, f, x)) holds, and hence f  bodyS(p)

x. We will show that ¬(backT (p, f, x)) holds; and then the converse will follow simi-
larly.
Assume that f  S x (n). Let σ ∈ preSymbols ((bodyS(p))) end in an fx-segment. Let
Q be the set of all if predicates q such that σ passes through <q = X(q)> for some
X(q) ∈ {T, F}. Since x ∈ NS(ω), there is a word w whose first letter is x and whose
last letter is a predicate in NS(ω) such that there is a w-segment in S. Let Ω be
the set of all pairs (q,¬X(q)) for q ∈ Q. Since bodyS(p) is while-free, Ω is finite and
reasonable (Definition 63). By Theorem 90 (if w ends in an if predicate) or Lemma 72
(if w ends in a while predicate) there is a wω-couple I = {i, j} in S which is Ω-finite.
Choose I = {i, j} to be Ω-minimal. To simplify notation we will assume that x ∈ P
and so w = p. Define

πS(k, e) = headS(I) <x = Yk> tailS(k, I)

for k ∈ {i, j} and Yi 6= Yj. We now show that for one k ∈ {i, j} the prefix

headS(I) <x = Yk>

ends in σ and hence {i, j} is an fxω-couple. If this were false, then headS(I) <x = Yk>
would have to enter the ¬X(q)-part of some q ∈ Q, contradicting Lemma 60 and the
minimality hypothesis on {i, j}.
Thus we have shown that an Ω-finite xω-couple for S (and hence T ) exists and that
an Ω-minimal xω-couple for S must be an fxω-couple. We now get a contradiction
by looking at T . Suppose that backT (p, f, x) holds. Let I ′ = {i′, j′} be an Ω-minimal
xω-couple for T . Write

headT (I ′) = µ′ <p = T> µ′′,

where µ′′ ∈ pre(bodyS(p)). Clearly µ′′ does not pass through f . By Lemma 60 we can
obtain another xω-couple for T by replacing µ′ by a prefix that does not enter the
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body of p in T . By Theorem 126, such a prefix does not pass through any element of
{f}∪Q; hence this replacement does not increase the sum

∑

q∈Q grade(I ′, q,¬(X(q)))
and the new xω-couple is not an fxω-couple, giving a contradiction. �
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13 u-equivalence implies Condition (11) of S similu T

In order to prove that u-equivalence of LFL schemas S and T implies Condition (11) of
u-similarity, we proceed as follows; assuming that S ∼=u T but S and T do not satisfy
this condition, then (with symbols as given in Definition 38) we prove the existence of
a word F ∈ x(F ∪ P)∗ ∩ F∗P such that there is an Fu-couple I for S (and hence T ,
by Proposition 57) such that the prefix of headS(I) preceding x passes through f and
then through f ′, and does not subsequently pass through a function symbol assigning
to assignS(f) = assignS(f ′), and headT (I) satisfies the same condition with S and T ,
and f and f ′, interchanged. This gives a contradiction since I is then an f ′Fu-couple
for S and an fFu-couple for T .

It is worth showing that Condition (11) is not redundant. To see this, for each j ∈
{1, 2} let Sj be the LFL schema

while pj(vj) do

{

u := fj(vj);

vj := gj(vj);

}

Then the LFL schemas S1S2 and S2S1 satisfy every condition of u-similarity except
Condition (11), but are not u-equivalent; consider for example the interpretation i
which maps p1(v1) and p2(v2) to T and maps every other predicate term to F; clearly
M[[S1S2]]

i
e(u) = f2(v2) whereas M[[S2S1]]

i
e(u) = f1(v1).

Definition 128 (unitary and superunitary symbols) Let S be a linear schema
and let σ be a segment in S. Let x be a symbol in S. Then we say that x is unitary in
σ (with respect to S) if either x occurs not more than once in σ, or x ∈ whilePreds(S)
and <x = T> occurs not more than once in σ. We say that x is superunitary in σ
(with respect to S) if x is unitary and every while predicate containing x in its body
in S is unitary in σ. The segment σ is said to be unitary with respect to S if every
symbol in S is unitary in σ with respect to S.

Observe that if p ∈ whilePreds(S) is superunitary in a prefix σ in S, and p occurs
more than once in σ, then σ = σ′ <p = T> σ′′ <p = F> σ′′′ for segments σ′, σ′′, σ′′′

not passing through p.

Definition 129 (The set PredpairsS(g, x)) Let S be a linear schema and assume
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that g  S x for g ∈ F ∪ V and x ∈ Symbols (S) ∪ V. We define the set

PredpairsS(g, x) ⊆ ifPreds(S) × {T, F}

to contain (q, Z) if and only if outif S(q, Z, g, x) ∨ thruS(q, Z, g, x) holds.

Observe that if LFL schemas S and T satisfy S ∼=u T and x ∈ NS(u) ∪ ({u} ∩ V),
then PredpairsS(g, x) = PredpairsT (g, x) holds for all g ∈ F .

Lemma 130 Let S be a linear schema and let p ∈ whilePreds(S) and
y ∈ Symbols (bodyS(p)).

(1) Let T be a linear schema, let u ∈ V ∪ {ω} and assume that S and T satisfy
conditions (1)–(10) of u-similarity. Assume y ∈ NS(u). Let n ≤ arity(y). If
v and w are the nth variables referenced by y in S and T respectively, then
v  bodyS(p) y ⇐⇒ w  bodyT (p) y holds.

(2) Assume that backS(p, g, y) holds for some g ∈ F . Let v = assignS(g). Then
g  bodyS(p) v and v  bodyS(p) y hold. Also, if p ցS q ցS g (Z) holds for some
q ∈ ifPreds(S), then outif S(q, Z, g, x) holds.

(3) Let g ∈ F with v = assignS(g) and let q ∈ ifPreds(S); then if
backS(p, g, y) ∧ outif S(q, Z, g, y) holds then outif bodyS(p)(q, Z, g, v) holds, and if

backS(p, g, y) ∧ thruS(q, Z, g, y)

holds then either thrubodyS(p)(q, Z, g, v) or thrubodyS(p)(q, Z, v, y) holds, but not
both.

Proof.

(1) This follows from Condition (4) of u-similarity and the fact that v  bodyS(p) y
holds if and only if there exists f ∈ (F−Funcs(bodyS(p))∪V such that f  bodyS(p)

y, and the corresponding statement in T .
(2,3) These follow immediately from the definitions of the relations.

�

Observe that the converse of the first statement of Part (2) of Lemma 130 does not
hold; that is, g  bodyS(p) v ∧ v  bodyS(p) y does not imply backS(p, g, y); for example,
if S is the linear schema in Figure 7.

Lemma 131 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let p ∈
whilePreds(S). Suppose outwhileS(p, g, x)∨ backS(p, g, x) holds for some x ∈ NS(u)∪
({u} ∩ V). Then

PredpairsbodyS(p)(g, assignS(g)) = PredpairsbodyT (p)(g, assignT (g))

holds.
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while p(u) do

{

if q(u) then v := g();

else Λ

w := y(v);

}

Fig. 7. If w 6= v then g  bodyS(p) v ∧ v  bodyS(p) y ∧ ¬backS(p, g, y) holds here

Proof. If outwhileS(p, g, x) holds then

PredpairsbodyS(p)(g, assignS(g)) = PredpairsS(g, x) ∩ ifPreds(bodyS(p))

holds; and if backS(p, g, x) holds then

PredpairsbodyS(p)(g, assignS(g)) = PredpairsS(g, x) − PredpairsbodyS(p)(assignS(g), x)

follows from Parts (2) and (3) of Lemma 130. By Conditions (8) and (9) of S similu T ,
the right-hand-sides in each case are unchanged by replacing S by T . �

Lemma 132 Let S be a linear schema and assume that f, f ′
 S x for some f, f ′ ∈ F

and x ∈ Symbols (S) ∪ V and assume that assignS(f) = assignS(f ′). Suppose that
f <<S f ′ <<S x holds. Assume that for every q ∈ ifPreds(S), the function symbols f
and f ′ are not q-competing for x. Then there is a unitary f ′x-prefix ν in S such that
for all (q, Z) ∈ PredpairsS(f, x) ∪PredpairsS(f ′, x) the prefix ν does not pass through
<q = ¬Z>, and for all q ∈ whilePreds(S) such that q ցS f ∨ q ցS f ′, either ν
passes once through <q = T> or ν does not pass through q.

Proof. We may assume that x ∈ Symbols (S), since if instead x ∈ V then we can
replace S by a linear schema T = S y :=h(x) and replace x by h ∈ Symbols(T ).
Since f ′

 S x holds, there is a unitary f ′x-prefix µ in S. Clearly any unitary f ′x-prefix
satisfies the conditions given for PredpairsS(f ′, x) and for any q ∈ whilePreds(S) such
that q ցS f ′, since it passes through f ′, hence it suffices to find a unitary f ′x-prefix
satisfying the conditions given for those predicates q for which q ցS f .
We say that any q ∈ Preds(S) is bad for µ if either (q, Z) ∈ PredpairsS(f, x) for some
Z ∈ {T, F} or q ∈ whilePreds(S) ∧ q ցS f , and q does not satisfy the appropriate
condition.
We prove the result on induction on the number of predicates q which are bad for µ.
Let q be such a predicate. There are two cases to consider.

• Let q ∈ whilePreds(S) and suppose q ցS f . Since f <<S f ′ holds, ¬(q ցS f ′)
and so q <<S f ′ follows. Thus µ passes through q but (since q is bad for µ) does not
enter the body of q, and so the letter <q = F> occurs in µ before f ′. We can replace
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<q = F> in µ by <q = T> σ <q = F> for some unitary σ ∈ Π(bodyS(q)), chosen
such that it does not pass the ‘wrong way’ through any predicates in bodyS(q). Let
ρ be the resulting f ′x-prefix. Clearly q is good (that is, not bad) for ρ and by the
choice of σ, every q′ ∈ Preds(S) which is good for µ is also good for ρ and so the
result follows from the inductive hypothesis applied to ρ.

• Now suppose that (q, Z) ∈ PredpairsS(f, x) for some Z ∈ {T, F}, and so µ passes
through <q = ¬Z >. Thus ¬(q ցS x) holds since either thruS(q, Z, f, x) or
outif S(q, Z, f, x) ∧ f <<S x holds. Thus ¬(q ցS f ′ (¬Z)) holds, since otherwise
outif S(q,¬Z, f ′, x) would hold, contradicting the fact that f and f ′ are not q-
competing for x. Hence µ has a segment <q = ¬Z> σ for some σ ∈ Π(part¬Z

S (q),
and f ′ and x do not occur in σ. We will show that we can replace this segment in
µ by <q = Z> σ′ for some unitary σ′ ∈ Π(partZS (q)) chosen so as to avoid introduc-
ing bad predicates in partZS (q), thus getting an f ′x-prefix ν to which the inductive
hypothesis can be applied. If σ occurs before f ′ in µ, or σ occurs after x in µ, then
this is obvious. If on the other hand f ′ occurs before q and x occurs after σ, then
since f <<S f ′ holds, ¬outif S(q, Z, f, x) follows and so thruS(q, Z, f, x) holds. Thus
by Proposition 31, an f ′x-segment cannot enter and leave part¬Z

S (q), thus giving a
contradiction. �

Lemma 133 Let S be a linear schema and let x ∈ Symbols(S).

(1) Let µ ∈ Π(S) not pass through x. Then there is a predicate q and Z ∈ {T, F}
such that q ցS x (Z) and µ passes through <q = ¬Z> at least once, but µ never
passes through <q = Z>.

(2) Let y ∈ Symbols(S) satisfy x <<S y. Suppose µ ∈ pre(Π(S)) ends in y and does
not pass through x. Then there is a predicate q and Z ∈ {T, F} satisfying the
same conditions as in Part (1) of this Lemma.

Proof.

(1) By induction on |S|, there exists q ∈ Preds(S) such that q ցS x and the path
µ passes through q. Choose q ∈ Preds(S) of ‘maximal depth in S’ such that
both these conditions hold; thus q ցS x and µ passes through q, but for every
q′ ∈ Preds(S) satisfying q ցS q′ ցS x, the path µ does not pass through q′.
Suppose that q ցS x (Z) holds. If µ does not pass through <q = Z>, then we
are done. If on the other hand µ passes through <q = Z>, then since µ does
not pass through x, there exists q′ ∈ Preds(S) satisfying q ցS q′ ցS x and µ
passes through q′, giving a contradiction.

(2) Let µµ′ ∈ Π(S). By Part (1) of this Lemma applied to µµ′, there exists q ∈
Preds(S) and Z ∈ {T, F} satisfying the required conditions provided that µ′

does not pass through q. But clearly either q <<S x or aboveS(x) = aboveS(q)
holds, and so q <<S y holds, so µ′ does not pass through q, giving the result. �

Lemma 134 Let S be a linear schema, let q ∈ whilePreds(S) and assume f <<bodyS(q)
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x for f ∈ Funcs(bodyS(q)) and x ∈ Symbols (bodyS(q)). Then

¬(backS(q, f, x))

holds.

Proof. Let v = assignS(f). Assume that backS(q, f, x) holds. Thus there is a vx-
segment σ in bodyS(q), which clearly does not pass through f . Since f <<bodyS(q) x
holds, by Lemma 133, Part (2), there is a predicate p in bodyS(q) such that p ցbodyS(q)

f (X) for X ∈ {T, F} and σ passes through <p = ¬X> but not through <p = X>.
Thus ¬(p ցbodyS(q) x (X)) holds; and since f  S x holds, there is an fv-segment τ
in the schema S(p). Write σ = σ′σ′′, such that the last letter of σ′ is the last letter of
σ lying in S(p). Thus τσ′′ is a segment in S(q) starting at f and ending at x. Since
¬(f  bodyS(p) x) holds, τσ′′ passes through an assignment to v after f ; and since σ is
a vx-segment, no such assignment exists in σ′′. Thus the assignment to v must be in
τ , contradicting the choice of τ . �

Lemma 135 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let f, f ′ ∈
Funcs(S) and assume that f, f ′

 S x (n) for some x ∈ NS(u) and n ≤ arity(x) . Let
S̄, T̄ be the main subschemas lying immediately above {f, f ′} in S and T respectively
and assume that x ∈ Symbols(S̄) and f <<S̄ f ′ ∧ f ′ <<T̄ f hold. Then the following
hold.

(1) above S̄(x) /∈ {above S̄(f), aboveS̄(f ′)}.
(2) If S̄ = bodyS(q) for q ∈ whilePreds(S) then backS(q, f, x) ⇐⇒ backS(q, f ′, x)

holds.

Proof.

(1) Assume first that above S̄(x) = aboveS̄(f). Thus x <<S̄ f ′ holds, and so ¬(f ′ <
<S̄ x) holds. Since f ′

 S x holds, we must have S̄ = bodyS(q) for some
q ∈ whilePreds(S) such that backS(q, f ′, x) and hence backT (q, f ′, x) holds by
Condition (9) of S similu T . But by Theorem 126 this contradicts aboveS̄(x) =
above S̄(f).
If instead above S̄(x) = aboveS̄(f ′), then interchange (S, f) and (T, f ′) to get a
contradiction.

(2) By Part (1) of this Lemma and its analogue in T , Theorem 126 and Lemma 134,
g  K x ⇐⇒ g <<K x holds for each g ∈ {f, f ′} and K ∈ {S̄, T̄}. Thus since
<<S̄ is transitive, f ′

 S̄ x ⇒ f  S̄ x and similarly f  T̄ x ⇒ f ′
 T̄ x follow

from f <<S̄ f ′ and f ′ <<T̄ f respectively. Thus backS(q, f, x) ⇒ backS(q, f ′, x)
and backT (q, f ′, x) ⇒ backT (q, f, x). Hence Part (2) of this Lemma follows from
Condition (9) of u-similarity.

�
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Lemma 136 (syntactic consequence of <<S relation) Let S be an LFL
schema and let f, f ′ ∈ Funcs(S) and assume that f, f ′

 S x (n) for some x ∈
Symbols (S) and n ≤ arity(x). Let S̄ be the main subschema lying immediately above
{f, f ′} in S and assume that f <<S̄ f ′ and if x ∈ Symbols(S̄) then

above S̄(x) /∈ {aboveS̄(f), aboveS̄(f ′)}

and f <<S̄ x ⇐⇒ f ′ <<S̄ x hold. Assume that for every q ∈ ifPreds(S̄), the function
symbols f and f ′ are not q-competing for x. Also let H be the set of while predicates
q in S̄ satisfying q ցS̄ f ∨ q ցS̄ f ′. Let g ∈ {f, f ′}. Then the following conditions
hold if and only if g = f ′.

(1) If f ′
 S̄ x then there exists a gx-prefix µ ∈ pre(Π(S̄)) such that for all (q, Z) ∈

Predpairs S̄(f, x) ∪ Predpairs S̄(f ′, x) we have grade(µ, q,¬Z) = 0 and for all q ∈
H, µ passes through <q = T> if it passes through q.

(2) If ¬(f ′
 S̄ x) then there exists a g assignS(g)-prefix µ ∈ Π(S̄) such that for all

(q, Z) ∈ Predpairs S̄(f, assignS(f)) ∪ Predpairs S̄(f ′, assignS(f ′)) we have
grade(µ, q,¬Z) = 0 and for all q ∈ H, µ passes through <q = T> if it passes
through q.

Furthermore, if g = f ′ then µ may be chosen to be unitary.

Proof. First observe that if f ′
 S̄ x, then f  S̄ x holds by Lemma 134; and if ¬(f ′

 S̄

x) instead, then either x /∈ Symbols(S̄) or S̄ = bodyS(r) for r ∈ whilePreds(S) and
backS(r, h, x) for each h ∈ {f, f ′}. Hence h  S̄ assignS(f) = assignS(f ′) for each
h ∈ {f, f ′}. We consider the cases g = f ′ and g = f separately.

• Assume g = f ′. The results in both cases (1) and (2) follow from Lemma 132 applied
to S̄.

• Now assume g = f .
We first prove the result for Case (1); thus we assume that f ′

 S̄ x holds. Suppose
that there exists an fx-prefix µ in S̄ satisfying the conditions given. We will deduce
a contradiction. Thus since f <<S̄ f ′ holds, we will get a contradiction if we show
that µ passes through f ′. Suppose that this does not hold; then by Lemma 133,
Part (2), there exists q ∈ Preds(S̄) such that q ցS̄ f ′ (Z) holds and µ passes
through <q = ¬Z >, but not through <q = Z >. If q ∈ whilePreds(S̄) then
q ∈ H , contradicting immediately the conditions on µ; and if q ∈ ifPreds(S̄) then
clearly ¬(q ցS̄ x (Z)) holds, so (q, Z) ∈ Predpairs S̄(f ′, x), again contradicting
immediately the conditions on µ.
The result for Case (2) is similar except that Part (1) of Lemma 133 must be used.

�

Theorem 137 (u-equivalence implies condition (11) of u-similarity)
Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. If f, f ′ ∈ Funcs(S) and
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f, f ′
 S x for x ∈ NS(u)∪ ({u}∩V) and assignS(f) = assignS(f ′), and S̄, T̄ are the

main subschemas of S and T respectively lying immediately above {f, f ′}, then either
¬(f <<S̄ f ′ ∧ f ′ <<T̄ f) holds, or there exists q ∈ ifPreds(S) such that f and f ′ are
q-competing for x in S.

Proof. Assume that there is no q ∈ ifPreds(S) such that f and f ′ are q-competing for
x in S, and that f <<S̄ f ′ ∧ f ′ <<T̄ f holds. We will obtain a contradiction.
We may also assume, using Lemma 27, that x ∈ NS(u) and there is a word F ∈
x(F ∪ P)∗ ∩ F∗P such that there is an Fu-couple for S.
If S 6= S̄, we define S̄ = bodyS(r). We now consider two cases separately.

• Suppose that f ′
 S̄ x (⇐⇒ f ′

 T̄ x) holds. Let I be the set of all fFu- and
f ′Fu-couples for S which are (q, T)-finite for all q ∈ whilePreds(S)∩NS(u) if u ∈ V
and let H be the set of while predicates q in S̄ satisfying q ցS̄ f ∨ q ցS̄ f ′.
Define the set

Ω = Predpairs S̄(f, x) ∪ Predpairs S̄(f ′, x).

Since there is no q ∈ ifPreds(S) such that f and f ′ are q-competing for x in S,
the set Ω is reasonable. By Corollary 116, the set I contains an Fu-couple which
is (r, T)-finite if H 6= ∅ ∧ S̄ = bodyS(r), is (q,¬Z)-finite for every (q, Z) ∈ Ω, and
is (q, F)-finite for every q ∈ H . Let J ⊆ I be the set of all such couples. Let J ′ be
the set of couples I ∈ J for which

∑

(q,Z)∈Ω

grade(I, q,¬Z)

is minimal, let J ′′ be the set of all I ∈ J ′ for which grade(I, r, T) is minimal if
H 6= ∅ ∧ S 6= S̄ = bodyS(r) (else let J ′′ = J ′), and let J ′′′ be the set of all I ∈ J ′′

for which the sum
∑

q∈H

gradeS(I, q, F, EXT )

is minimal.
Let I ∈ J ′′′. We will assume that I is an fFu-couple and show that this leads to
a contradiction. If we had assumed that I is an f ′Fu-couple, we could similarly
have obtained a contradiction by interchanging S and T and f and f ′, since by
Proposition 57, the sets Ω and H are unchanged if S is replaced by T .
Assume, thus, that I is an fFu-couple. Observe that by Lemma 135, the hypotheses
of Lemma 136 are satisfied. To simplify the notation we will assume that x ∈ F .
Thus headS(I) has a segment µ which is an fx-prefix in S̄, and such that if µ in
headS(I) is replaced by an f ′x-prefix ν in S̄, then an f ′Fu-couple J ∈ I results.
By Lemma 136, Part (1), either µ passes through a letter <q = ¬Z> such that
(q, Z) ∈ Ω or µ passes through a letter <q = F> such that q ∈ H and µ does not
pass through <q = T>, and by this Lemma, we may choose ν such that it is unitary
and does not satisfy these conditions.
Assume that J is (S, q,¬Z)-normalised for every (q, Z) ∈ Ω,
(S, r, T)-normalised if S̄ 6= S and (S, q, F)-normalised for every q ∈ H . Thus J ∈ J ;
and so J ∈ J ′′ by Lemma 69.
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If µ passes through a letter <q = ¬Z> such that (q, Z) ∈ Ω, then Lemma 69 applied
to I and J contradicts I ∈ J ′. Hence there is some q ∈ H violating the conclusion
of Part (1) of Lemma 136 for µ. Let ρ be the prefix of headS(I) preceding µ. If
S 6= S̄ and ρ passes through S̄, then Lemma 69 contradicts I ∈ J ′′, since ρ could
be replaced by a prefix not passing through S̄. Thus ρ does not enter the body of q
and so gradeS(ρµ, q, F, EXT ) > 0, and so Part (3) of Lemma 114 applied to I and
J contradicts I ∈ J ′′′.

• Suppose that ¬(f ′
 S̄ x) holds. Thus either x /∈ Symbols(S̄) or S̄ = bodyS(r) ∧

backS(r, h, x) holds for each h ∈ {f, f ′}; and the same statement with S replaced
by T is true. The proof here is the same as in the preceding case except that
we must define Ω = Predpairs S̄(f, assignS(f)) ∪ Predpairs S̄(f ′, assignS(f ′)) (by
Lemma 131, this definition is unchanged if S is replaced by T ) and the segment µ
is an f assignS(f)-prefix in S̄, and Part (2) of Lemma 136 must be used.

�
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14 {u, ω}-equivalence implies Conditions (12) and (13) of {u, ω}-similarity

Theorem 147 is the main result of this section.

As we have mentioned in Section 3, Condition (12) of u-similarity is probably re-
dundant; that is, we conjecture that it is a consequence of the other u-similarity
conditions. However Condition (13) is not. To see this, let S1 be the LFL schema

if q̂(z) then v := f(z, w);

if q(z) then u := g(z, v);

z := h(z);

and let S2 be the LFL schema

if q(z) then

{

if q̂(z) then v := f(z, w);

u := g(z, v);

}

z := h(z);

For each j ∈ {1, 2} let Tj be the LFL schema while p(z) do Sj . Then the schemas T1

and T2 satisfy every condition of u-similarity except Condition (13), since

outif S2
(q, T, f, v)

and

¬(outif S1
(q, T, f, v) ∨ thruS1

(q, T, f, v))

hold, and are not u-equivalent; consider for example the interpretation i which satisfies

pi(z) = pi(h(z)) = q̂i(z) = qi(h(z)) = T

and maps all other predicate terms to F. For both T1 and T2, the path πS(i, e) passes
twice through the body of p; passing through the false part of q the first time and
through the true part of q the second time. For q̂ it is the other way round. Thus
M[[T1]]

i
e(u) = g(h(z), f(z, w)) whereas M[[T2]]

i
e(u) = g(h(z), v).
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Definition 138 (The u-correspondence relation for prefixes) Let u ∈ V ∪{ω}
and let S, T be linear schemas satisfying conditions (1)-(11) of u-similarity. Let
σ ∈ pre(Π(S)) and τ ∈ pre(Π(T )). We define the correspondence relation as fol-
lows. Assume that σ and τ end in the same symbol x ∈ NS(u), one element of the set
{σ, τ} is unitary and x is superunitary in the other, and if x ∈ Preds(S), then σ and
τ end in the same actual letter (that is, either <x = T> or <x = F>). Also assume
that if x ∈ whilePreds(S), then x occurs the same number of times in each element
of {σ, τ}. Then we say that (σ, τ) is a u-corresponding pair (for (S, T )).
We also say that a pair (σ, τ) is a disagreeing u-correspondence (for (S, T )) if one
element of the set {σ, τ} ends in <p = Z> for p ∈ Preds(S) ∩ NS(u) and Z ∈ {T, F},
the other element ends in <p = ¬Z>, and replacing Z and ¬Z by F in the last letters
of σ and τ gives a u-corresponding pair for (S, T ).

Lemma 139 Let u ∈ V ∪ {ω} and let S, T be linear schemas satisfying condi-
tions (1)-(11) of u-similarity. Let (σ, τ) be a u-corresponding pair for (S, T ). Assume
there do not exist σ′ ∈ pre(σ) and τ ′ ∈ pre(τ) such that (σ′, τ ′) is a disagreeing
u-correspondence for (S, T ).

(1) Let y ∈ NS(u) occur in both σ and τ . Then y is superunitary in both σ and τ .
(2) Let x ∈ NS(u) be the last letter of σ and τ . Then

M[[schema(σ)]]e(x(refvecS(x))) = M[[schema(τ)]]e(x(refvecT (x)))

holds.

Proof.

(1) By the symmetry of the hypotheses, we may assume that y is superunitary in
σ, but not in τ . We will deduce a contradiction. Let the sequence y1, . . . , yn = y
be such that each yi for i < n is a while predicate and each yi lies immediately
below yi−1 in S and y1 lies immediately below S. Clearly n ≥ 2. Suppose that
yi is not superunitary in τ , for minimal i. Thus yi is not unitary in τ , and
yi ∈ whilePreds(T ) holds by the minimality of i. Let τ̂ be the prefix of τ ending
in the second occurrence of yi. We may write

τ̂ = τ ′ <yi = T> τ ′′ <yi = T>

by the minimality of i. Since y and hence yi occurs in σ, we may write

σ = σ′ <yi = Z> σ̄

such that yi does not occur in σ′. Since (σ′ <yi = Z >, τ ′ <yi = T>) is not
allowed to be a disagreeing u-correspondence, we have Z = T; and since y and
hence yi is superunitary in σ, the letter <yi = T> does not occur in σ̄. Clearly
(x 6= yi)∧¬(yi ցT x) holds by the hypotheses, and σ ends in x, hence <yi = F>
occurs in σ̄. But this implies that σ has a prefix σ̂ such that (σ̂, τ̂) is a disagreeing
u-correspondence, contradicting the hypotheses.
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(2) This follows by induction on the length of σ. For any r ≤ arity(x), let F (S, r)
be the set of elements f ∈ F such that f  S x (r) and σ passes through f
and f 6= x, and define F (T, r) similarly with respect to τ . We will show that
F (S, r) = F (T, r), and that the last element of F (S, r) to occur along ξ is the
same for each ξ ∈ {σ, τ}.
Suppose that f ∈ F (S, r). We will show that f ∈ F (T, r); the opposite implica-
tion follows similarly. Let T̂ be the main subschema of T lying immediately above
{f, x}. Assume first that ¬(f <<T̂ x) holds. Thus T̂ = bodyT (p) and backT (p, f, x)
holds for some p ∈ whilePreds(T ). Hence backS(p, f, x) and so ¬(f <<bodyS(p) x)
by Lemma 134, contradicting the fact that x is superunitary in σ. Hence f <<T̂ x

holds; and so if f /∈ F (T, r), then by Part (2) of Lemma 133 applied to T̂ , we
get q ցT̂ f (X) for some predicate q and X ∈ {T, F}, and τ passes through
<q = ¬X > but not through <q = X >. Thus ¬(q ցT x (X)) holds; hence
outif T (q, X, f, x) or outwhileT (q, f, x) holds. Thus

outif S(q, X, f, x) ∨ thruS(q, X, f, x) ∨ outwhileS(q, f, x)

holds by conditions (8) and (10) of u-similarity and so σ passes through <q = X>
and hence q is superunitary in both σ and τ by Part (1) of this Lemma. Let σ′ ∈
pre(σ) end at <q = X> and define τ ′ ∈ pre(τ) similarly; then the pair (σ′, τ ′) is
a disagreeing u-correspondence, contradicting the hypotheses. Thus we conclude
that F (S, r) = F (T, r) and hence all elements of F (S, r) are superunitary in both
σ and τ , by Part (1) of this Lemma.
Now assume that f and g are the last elements of F (S, r) = F (T, r) to occur
on σ and τ respectively. Suppose f 6= g. We will show that this leads to a
contradiction. Thus f occurs before g in σ, but after g in τ . Let S̄ and T̄ be the
main subschemas of S and T lying immediately above {f, g}. Since f and g are
superunitary in both σ and τ , we get f <<S̄ g and g <<T̄ f ; thus by Condition
(11) of u-similarity there is an if predicate q such that f and g are q-competing
for x. Thus there exists X ∈ {T, F} such that σ passes through <q = X> and τ
passes through <q = ¬X>, again giving a disagreeing u-correspondence since q
is superunitary in both σ and τ by Part (1) of this Lemma. Thus we have shown
f = g.
We now show that (2) follows from this. Let r ≤ arity(x). We may assume
that F (S, r) 6= ∅. Observe that if f ∈ F (S, r) and σ has a prefix σ′ ending
in f and does not later pass through an element of F (S, r), then if we write
M[[schema(σ)]]e(x(refvecS(x))) = x(t), then the rth component of t is

M[[schema(σ′)]]e(f(refvecS(f)),

and a similar statement holds for a prefix τ ′ of τ . Thus (2) follows from the
inductive hypothesis applied to (σ′, τ ′), which is a u-corresponding pair by Part
(1) of this Lemma.

�
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Corollary 140 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas and let i
be an interpretation. Let σ ∈ pre(πS(i, e)) and τ ∈ pre(πT (i, e)).

(1) Then (σ, τ) is not a disagreeing u-correspondence for (S, T ).
(2) If (σ, τ) is a u-correspondence for (S, T ) and σ and τ both end in x ∈ NS(u),

then

M[[schema(σ)]]e(x(refvecS(x))) = M[[schema(τ)]]e(x(refvecT (x)))

holds.

Proof. We prove the conditions by induction on |σ|. Thus (2) for the pair (σ, τ) follows
from the inductive hypothesis and Part (2) of Lemma 139 applied to (σ, τ), so it
remains to prove (1) for the pair (σ, τ). We will assume (1) is false and deduce a
contradiction.
Let σ = σ′ <x = Z(S)> and τ = τ ′ <x = Z(T )> and let σ̄ and τ̄ be obtained from
σ and τ by replacing Z(S) and Z(T ) by F in the last letter. Suppose that the final
occurrence of x defines the predicate terms x(s) and x(t) in σ and τ respectively. Let
the interpretation j = i(x(s) = x(t) = F).
We now show that τ ′ does not pass through x(s). If this is false, then since clearly
(σ̄, τ̄) is a u-correspondence for (S, T ), we have x ∈ whilePreds(S) and σ′ and τ ′ have
prefixes σ′′ and τ ′′ which end in x (defining the predicate term x(s) in the case of
τ ′′) and u-correspond. By the minimality assumption on σ, applying (2) to the pair
(σ′′, τ ′′) shows that σ′′ also passes through x(s), contradicting the freeness of S.
Thus we have shown that τ ′ and (similarly) σ′ do not pass through x(s) and x(t)
respectively. Hence σ̄ ∈ pre(πS(j, e)) and τ̄ ∈ pre(πT (j, e)). Thus x(s) = x(t) follows
from the inductive hypothesis and Part (2) of Lemma 139 applied to (σ̄, τ̄), thus
showing that Z(S) = Z(T ) and giving a contradiction. �

Lemma 141 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas and let i be
an interpretation.

(1) Suppose that backS(p, g, y) holds for some g ∈ F and p ∈ whilePreds(S) with
abovebodyS(p)(g) = g, and y ∈ NS(u). Assume that

σ = σ′ <p = T> σ′′ ∈ pre(πS(i, e)),

where σ′′ ∈ Π(bodyS(p)), and define τ = τ ′ <p = T> τ ′′ ∈ pre(πT (i, e)) such that
(σ′ <p = T>, τ ′ <p = T>) is a u-correspondence for (S, T ) and τ ′′ ∈ Π(bodyT (p)).
If either σ or τ is unitary, and σ′′ ends in a g assignS(g)-segment, then τ ′′ passes
through g.

(2) Assume that u = ω and let

σ = σ′ <p = T> σ′′ ∈ pre(πS(i, e))
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and
τ = τ ′ <p = T> τ ′′ ∈ pre(πT (i, e))

where (σ′ <p = T>, τ ′ <p = T>) is a u-correspondence for (S, T ) and σ′′ ∈
Π(bodyS(p)) is unitary. Assume τ ′′ ∈ pre(Π(bodyT (p))). Then τ ′′ is unitary; and
if τ ′′ passes through a while predicate, then σ′′ also passes through this while
predicate.

(3) Assume that u = ω and πS(i, e) has a unitary prefix ending at
p ∈ whilePreds(S). If πT (i, e) passes through p, then p is superunitary in the
prefix of πT (i, e) ending at the first occurrence of p.

Proof.

(1) If τ ′′ does not pass through g, then p ցT q ցT g (Z) for some q ∈ ifPreds(T )
such that abovebodyS(p)(q) = q and τ ′′ passes through <q = ¬Z>. Thus
outif T (q, Z, g, y) holds by Part (2) of Lemma 130 and so

outif S(q, Z, g, y)∨ thruS(q, Z, g, y)

holds. We will show that σ′′ passes through <q = Z>, whereupon Part (2) of
Corollary 140 gives a contradiction since q is superunitary in the prefixes of σ
and τ ending at these occurrences of q. If σ′′ does not pass through <q = Z>,
then

¬outif S(q, Z, g, y)∧ ¬thrubodyS(p)(q, Z, g, assignS(g))

holds and so thruS(q, Z, g, y) holds. Thus by Part (3) of Lemma 130,

thrubodyS(p)(q, Z, assignS(g), y)

holds and so by Part (1) of Lemma 130, thrubodyT (p)(q, Z, assignT (g), y) holds.
But we have shown that outif T (q, Z, g, y) holds. Let µµ′ be any assignT (g) y-
segment in bodyT (p), where µ contains all the symbols lying under q. Let µ′′′

be a g assignT (g)-segment in partZT (q); thus µ′′′µ′′ is a gy-segment in bodyT (p),
contradicting backT (p, g, y).

(2) This is by induction on the length of τ ′′. Assume, thus, that the assertions are
true for every strict prefix of τ ′′. Suppose first that τ ′′ ends in q ∈ whilePreds(S),
and σ′′ does not pass through q. By the inductive hypothesis, if p ցS p′ ցS q
for p′ ∈ whilePreds(S), then σ′′ passes through p′. Thus by Part (1) of Lemma
133, there is an if predicate p′ such that

p ցS p′ ցS q (Z) ∧ (abovepartZ

S
(p′)(q) = q)

and σ′′ passes through <p′ = ¬Z > but not through <p′ = Z >. Hence also
p′ ցS q (Z) holds by condition (7) of ω-similarity and so the prefixes of πS(i, e)
and πT (i, e) ending at p′ within σ′′ and τ ′′ are ω-disagreeing, contradicting Part
(1) of Corollary 140.
Assume now that τ ′′ is not unitary. Thus by the inductive hypothesis we may
write τ ′′ = µ <q = T> µ′ <q = T> such that µ <q = T> µ′ is unitary and µ′ is

94



a path in the body of the while predicate q. By the inductive hypothesis applied
to µ <q = T>, σ′′ passes through q and so σ′′ has a prefix ν <q = T> ν ′ <q = F>,
again giving rise to an ω-disagreement.

(3) This is by induction on the number of while predicates containing p in their
bodies. Let τ be the shortest element of pre(πT (i, e)) ending in p. Clearly p is
unitary in τ , so if p is not superunitary in τ , then q ցS p holds for a while
predicate q which is not superunitary in τ , such that all while predicates q′

satisfying q′ ցS q are superunitary in τ , and so q is not unitary in τ . Thus τ
has a prefix

τ ′ <q = T> τ ′′ <q = Z>

with Z ∈ {T, F} and τ ′′ ∈ Π(bodyT (q)) such that q is superunitary in τ ′ <q = T>
by the inductive hypothesis. Since p only occurs at the end of τ , τ ′′ does not pass
through p.
By the hypotheses there is a unitary prefix σ′ <q = T> σ′′ ∈ pre(πS(i, e)) such
that σ′′ ∈ pre(Π(bodyS(p)) ends in p, thus contradicting Part (2) of this Lemma.

�

Lemma 142 Let u ∈ V ∪ {ω} and let S, T be linear schemas satisfying conditions
(1)–(10) of u-similarity. Let q ∈ ifPreds(S) and x ∈ NS(u). Let X ∈ {T, F}. If
q ցS x (X) then q ցT x (¬X) is false.

Proof. Assume q ցS x (X). The Lemma follows by induction on
depnumS (x, u). If depnumS (x, u) ≤ 2 then the Lemma follows from Conditions (7)
and (10) of u-similarity.
Thus we may assume depnumS (x, u) ≥ 3 and so by Proposition 37, either x S y or
x ցS y for y ∈ NS(u) with depnumS (y, u) < depnumS (x, u).
Assume first that x  S y holds. If outif S(q, X, x, y) then the Lemma follows from
Condition (10) of u-similarity; so assume that x  partX

S
(q) y holds. Thus ¬(q ցT

y (¬X)) by the inductive hypothesis applied to y and so the Lemma again follows
from Condition (10) of u-similarity.
We now consider the case where x ցS y (X ′) for X ′ ∈ {T, F}. By the inductive
hypothesis applied to y, ¬(q ցT y (¬X)) holds. Thus if x ∈ whilePreds(S), then
¬(q ցT x (¬X)) follows from Condition (8) of u-similarity. Hence we may assume
x ∈ ifPreds(S). By Proposition 37, y  S z for z ∈ NS(u) with ¬(x ցS z (X ′)), and
so outif S(x, X ′, y, z) holds. By Condition (10) of u-similarity, either outif T (x, X ′, y, z)
or thruT (x, X ′, y, z) holds. The former case would contradict ¬(q ցT y (¬X)), so
thruT (x, X ′, y, z) follows. By Proposition 31, there exists y′ ∈ F such that

outif T (x,¬X ′, y′, z)

holds and depnumS (y′, u) < depnumS (x, u). Assume that q ցT x (¬X) and so
q ցT y′ (¬X) holds. We will deduce a contradiction. By the inductive hypothesis ap-
plied to z, either ¬(q ցS z (X)) or ¬(q ցT z (¬X)) holds. If ¬(q ցT z (¬X)),
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holds, then outif T (q,¬X, y′, z) follows, and so by Condition (10) of u-similarity,
outif S(q,¬X, y′, z) ∨ thruS(q,¬X, y′, z) and hence ¬(q ցS y′ (X)) holds. Also

outif S(x,¬X ′, y′, z) ∨ thruS(x,¬X ′, y′, z)

(and thus clearly the latter) similarly holds. Hence thruS(q,¬X, y′, z)∧ thruS(q, X, y′, z)
holds. But then every y′z-segment in S must pass twice through q, which is clearly
impossible. If instead ¬(q ցS z (X)) holds, then a contradiction is similarly obtained
by interchanging S and T , y and y′, X and X ′ and X and ¬X, thus completing the
proof. �

Lemma 143 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas, let p ∈
whilePreds(S) and assume that v  bodyS(p) x (r) for some

x ∈ Symbols (bodyS(p)) ∩ NS(u).

Then there is a unitary vx-segment σ in bodyS(p) which does not enter the body
of any while predicate whose body does not contain x, and such that for all q ∈
ifPreds(bodyT (p)) such that q ցT x (Z), σ does not pass through <q = ¬Z>.

Proof. Clearly a unitary vx-segment σ in bodyS(p) exists which satisfies the condition
on while predicates. Suppose that there exists
q ∈ ifPreds(bodyT (p)) such that q ցT x (Z) and σ passes through <q = ¬Z>. By
Lemma 142, and the fact that σ is unitary, ¬(q ցS x) holds. We will alter σ by
rerouting it through partZS (q) instead of part¬Z

S (q).
Suppose this does not work; that is, g  bodyS(p) x (r) for some g ∈ F such that
q ցS g (Z). Clearly outif S(q, Z, g, x)∨thruS(q, Z, g, x) holds, and the same condition
holds in T . But q ցT x (Z) and so outif T (q, Z, g, x) holds and thus backT (p′, g, x)
holds for some p′ ∈ whilePreds(T ). Hence backS(p′, g, x) holds, contradicting the fact
that σ is unitary. Thus the altered prefix is still a vx-segment which can be chosen to
satisfy the other conditions required.
We repeat this step for every ‘bad’ pair (q, Z), in order of increasing length of the
prefix of σ preceding q, to obtain the desired vx-segment in bodyS(p). �

Lemma 144 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas, let p ∈
whilePreds(S)∩NS(u) and let (σ <p = T>, τ <p = T>) be a u-corresponding pair for
(S, T ). Assume that σ and τ end with <p = T>. Let i be an interpretation and assume
that σ ∈ pre(πS(i, e)) and τ ∈ pre(πT (i, e)). Let x ∈ NS(u) ∩ Symbols(bodyS(p))
and assume that v  bodyS(p) x (r) and w  bodyT (p) x (r) for some v, w ∈ V and
r ≤ arity(x). Then M[[schema(σ)]]ie(v) = M[[schema(τ)]]ie(w).

Proof. Suppose that there exist prefixes

σ′ ∈ pre(Π(bodyS(p))), τ ′ ∈ pre(Π(bodyT (p)))
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ending in x such that (σ <p = T> σ′, τ <p = T> τ ′) is a u-corresponding pair for
(S, T ) and σ <p = T> σ′ ∈ pre(πS(i, e)) and τ <p = T> τ ′ ∈ pre(πT (i, e)), and σ′ does
not pass through any g ∈ F such that g  S x (r), then the result follows from Part
(2) of Lemma 140. Thus it suffices to show that the interpretation i can be changed
at predicates in bodyS(p) and bodyT (p) to achieve this outcome.
Choose any unitary vx-segment σ′ in bodyS(p) such that for any
q ∈ whilePreds(bodyS(p)) such that ¬(q ցS x), σ′ does not pass through <q = T>,
and that if σ′ passes through <q = Z> for any q ∈ ifPreds(bodyS(p)), then ¬(q ցT

x (¬Z)) holds (possible by Lemma 143).
We may make the following assumptions about i; for any
q ∈ whilePreds(bodyS(p)) such that p ցS q ցS x, then qi(t) = T if q(t) is S-
external and qi(t) = F otherwise; and for any q ∈ whilePreds(bodyS(p)) such that
p ցS q ∧ ¬(q ցS x), or the same condition holds in T , then set qi(t) = F for
all t. By Theorem 109, this ensures that in both S and T , i defines a path which
reaches the second occurrence of p after following a unitary path through its body.
We also assume that if σ′ passes through <q = Z> for any q ∈ ifPreds(bodyS(p)), or
q ցT x (Z), then qi(t) = Z for all t. By the choice of σ′, these are not contradictory
assumptions.
By Part (1) of Lemma 133, σ <p = T> σ′ ∈ pre(πS(i, e)) holds and there exists
τ ′ ∈ pre(Π(bodyT (p))) such that σ′ and τ ′ satisfy the conditions required, proving the
Lemma. �

For Proposition 145 and Lemma 146, recall the definition of a preupdated symbol,
Definition 91.

Proposition 145 Let u ∈ V ∪ {ω} and let S, T be u-equivalent LFL schemas. Let
q ∈ whilePreds(S) and assume x ∈ Symbols (bodyS(q))∩NS(u) and abovebodyS(q)(x) =
x. Then x is preupdated in S if and only if x is preupdated in T .

Proof. This follows from Part (1) of Lemma 130. �

Lemma 146 states that under certain strict conditions, given {u, ω}-equivalent LFL
schemas S and T and an interpretation i, if the path πS(i, e) passes through some
x ∈ NS(u) and πT (i, e) also passes through x, but not through the ‘same occurrence’
of x, then the predicate terms thus defined by the two paths are distinct. We have
been unable to prove the Lemma under the weaker assumption that S and T are just
u-equivalent for u ∈ V, but we conjecture that it also holds in this case.

Lemma 146 Let u ∈ V ∪ {ω} and let S, T be {u, ω}-equivalent LFL schemas con-
taining a while predicate p. Let i be an interpretation and let

σ = σ′ <p = T> σ′′ ∈ pre(πS(i, e))

and
τ = τ ′ <p = T> τ ′′ ∈ pre(πT (i, e))
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with σ′′ ∈ Π(bodyS(p)) and τ ′′ ∈ Π(bodyT (p)). Assume that

(σ′ <p = T>, τ ′ <p = T>)

is a u-correspondence, and τ ′′ is unitary. Assume that σ′′ passes through a symbol
x ∈ NS(u) and τ ′′ does not pass through x. Let γ be the prefix of σ′′ preceding the
first occurrence of x (there may be two if x is a while predicate). Suppose that πT (i, e)
passes through x and let ν be the prefix of πT (i, e) preceding one of the occurrences of
x in πT (i, e). Then

M[[schema(σ′γ)]]e(refvecS(x)) 6= M[[schema(ν)]]e(refvecT (x))

holds.

Proof. Observe that σ′′ is unitary by Lemma 141, Part (2), and x is not, in fact, a
while predicate by Part (3) of this Lemma. We define a finite sequence x1 = x, . . . , xn

with each xr ∈ F if r ≥ 2, as follows. The path τ ′′ does not pass through any xr. Given
xr, we choose xr+1 to satisfy xr+1  schema(γ) xr (or xr+1  schema(γ) v ∈ RefsetS(xr)
if r = 1) such that the path τ ′′ does not pass through any xr. If no such xr+1 exists
then put r = n. Let q ∈ whilePreds(T ) lie immediately above xn.
Let γ′ be the prefix of γ preceding xn. Thus the vector term

M[[schema(σ′γ)]]e(refvecS(x))

contains M[[schema(σ′γ′)]]e(refvecS(xn)) as a vector subterm, and so if the Lemma
is false, the vector term M[[schema(ν)]]e(refvecT (x)) has a vector subterm t =
M[[schema(σ′γ′)]]e(refvecS(xn)).
Let G be the set of function symbols g satisfying g  γ′ v for some v ∈ RefsetS(xn).
We now show that for any component w ∈ RefsetT (xn), there are no assignments
to w occurring on ν after all g-assignments for g ∈ G have occurred on τ ′′. Let
w ∈ RefsetT (xn) and assume w is the rth component of refvecT (xn). Suppose first
that there exists g ∈ G such that g  S xn (r). By the choice of xn, both σ′′ and τ ′′

pass through g and define the same term t = M[[schema(σ′γ′)]]e(assignS(g)) in each
case, by Part (2) of Corollary 140. Clearly t is a component of t and so by the liberal-
ity of T , if the Lemma is false there are no assignments to w in ν after the occurrence
of g in τ ′′. On the other hand, if no such g ∈ G exists, then by Lemma 144, it follows
similarly that there are no assignments to w in ν after the first occurrence of p.
Assume that q is the while predicate lying immediately above xn in S and T . Clearly
p ցS q ∨ p = q holds. Suppose first that xn is preupdated in T . Then ν has a suffix
<q = T> ν̄ beginning after τ ′′ has ended such that ν̄ ∈ pre(Π(bodyT (q))) passes
through some g ∈ F with g  bodyT (q) xn. This immediately contradicts what we
have just shown. Thus by Proposition 145, xn is not preupdated in T , and hence not
preupdated in S. Thus xn is postupdated in S and so there exists h ∈ F satisfying
backS(q, h, xn) such that the segment of σ′′ lying in bodyS(q) passes through h. Since
by Lemma 141, Part (2), and Part (1) of Corollary 140, τ ′′ also enters bodyT (q), by
Lemma 141, Part (1), τ ′′ also passes through h. Since τ is unitary, by Lemma 134 h
occurs on τ ′′ after all occurrences of G, again giving a contradiction. �
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The following Theorem shows that {u, ω}-equivalence implies conditions (12) and (13)
of {u, ω}-similarity.

Theorem 147 (main result of this section) Let u ∈ V∪{ω} and let S, T be u, ω-
equivalent LFL schemas. If p ∈ whilePreds(S), f ∈ Funcs(S), x ∈ NS(u), f  S x
and x ∈ NS(u) with v = assignS(f) and w = assignT (f), then

f  bodyS(p) v ∧ v  bodyS(p) x

⇐⇒

f  bodyT (p) w ∧ w  bodyT (p) x

holds, and if also q ∈ ifPreds(S) and p ցS q and Z ∈ {T, F} and v  bodyS(p) x holds,
then

(outif bodyS(p)(q, Z, f, v) ∨ thrubodyS(p)(q, Z, f, v))

⇐⇒

(outif bodyT (p)(q, Z, f, w) ∨ thrubodyT (p)(q, Z, f, w))

holds.

Proof. Suppose first that f  bodyS(p) v ∧ v  bodyS(p) x holds. We will show that
f  bodyT (p) w ∧ w  bodyT (p) x holds; the converse follows similarly.
By Part (1) of Lemma 130, w  bodyT (p) x holds, so we need only prove f  bodyT (p) w.
Since x ∈ NS(u), by Lemma 27 we may assume that there is an xF -segment in S for
xF ∈ F∗r and r ∈ P ∩ NS(u). By the hypotheses given, there is an fxF -segment ν
in S which can be written ν = ν ′ <p = T> ν ′′ν ′′′, where ν ′ is an fv-segment and ν ′′ is
a vx-segment. Let µ ∈ pre(Π(S)) be unitary and end just before f . Thus there is an
fxF -couple I = {i, j} for S such that headS(I) is the prefix of µν preceding the final
occurrence of r. Let Ω be the set of all pairs (p′, T ) such that p′ ∈ whilePreds(S) and
p′ ցS p. By Part (2) of Lemma 74 if u = ω, we may assume that I is Ω-finite; and
since µ is unitary, by Lemma 69 if Ω 6= ∅, we may assume that I is Ω-minimal.
Thus I is an r(t)-couple for some vector term t of which
M[[schema(µ)]]e(refvecS(f)) and M[[schema(µν ′ν ′′)]]e(refvecS(x)) are vector sub-
terms. We now look at T . Let i ∈ I be terminating; clearly one element of I is.
Clearly πT (i, e) passes through f and hence through <p = T>. Thus πT (i, e) has a
prefix γ′ <p = T> γ′′, where γ′′ ∈ Π(bodyT (p)) and by the Ω-minimality assumption,
p is superunitary in this prefix. By Lemma 141 , Part (2), γ′′ is unitary. By Lemma
146 applied to f and x, γ′′ passes through f , but if it passes through x, then it does
not define the term

x(M[[schema(µν ′ν ′′)]]e(refvecS(x)))

at that point. Thus γ′′ ends in an fw-segment.
We have shown that f  bodyS(p) v ⇐⇒ f  bodyT (p) w holds. Now assume f  bodyS(p)

v and
¬(outif bodyS(p)(q, Z, f, v) ∨ thrubodyS(p)(q, Z, f, v))

holds. We will show that ¬(outif bodyT (p)(q, Z, f, w) ∨ thrubodyT (p)(q, Z, f, w)) holds;
again the converse follows similarly. In the construction above, choose a segment ν ′
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which does not go through <q = Z>. If outif bodyT (p)(q, Z, f, w)∨ thrubodyT (p)(q, Z, f, w)
holds, then γ′′ does pass through <q = Z>. Let q(t′) be the term that headT (I) defines
at this point. By Lemma 146 applied to q, neither πS(i, e) nor πS(j, e) passes through
q(t′). Thus we may replace i and j with i(q(t′) = ¬(Z)) and j(q(t′) = ¬(Z)) without
changing the paths through S. The paths through T defined by the new couple pass
through <q = ¬Z> instead of <q = Z> within γ′′; since γ′′ is unitary, we have shown
¬(outif bodyT (p)(q, Z, f, w) ∨ thrubodyT (p)(q, Z, f, w)). Hence

outif bodyT (p)(q, Z, f, w) ∨ thrubodyT (p)(q, Z, f, w)

⇒

outif bodyS(p)(q, Z, f, v) ∨ thrubodyS(p)(q, Z, f, v)

holds, and the converse follows similarly. �
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15 The Main Theorem and Further Directions

The main result of this paper is the following.

Theorem 148 Let S, T be LFL schemas. Then

S ∼= T ⇐⇒ S simil T

holds. If V ⊆ V ∪ {ω} and ω ∈ V then

S ∼=V T ⇐⇒ S similV T

holds. In particular, it is decidable in polynomial time whether S and T are equivalent.

Proof. The first assertion is a special case of the second (where V is the set containing
all variables assigned in either S or T , plus ω). To prove the second assertion, assume
S similV T for LFL schemas S, T with V as given. Then S ∼=V T follows from Theorem
55. Conversely, if S ∼=V T , then Conditions (1)–(4) of u-similarity for each u ∈ V
follow from Theorem 75, Conditions (2) and (3) follow from Theorem 96, Condition
(7) from Theorem 118, Condition (8) from Theorem 126, Condition (9) from Theorem
127, Condition (10) from Theorem 105, Condition (8) from Theorem 126, Condition
(11) from Theorem 137 and Conditions (12) and (13) from Theorem 147 (since ω ∈ V
in this last case). The polynomial time bound follows from Theorem 39. �

Since we have been unable to prove that S ∼=v T implies Conditions (12) and (13) of
S similu T for LFL schemas S, T and v ∈ V, the hypothesis ω ∈ V in Theorem 148 is
necessary.

Of the various related problems which seem worth studying, two strike us as being
particularly promising.

15.1 Computing minimal slices of schemas

For the purpose of program slicing, given a schema S and variable v, it is of interest to
be able to compute those minimal slices of S (with minimality defined by symbol sets)
which are v-equivalent to S and which preserve termination. It follows from Theorem
76 and Part (1) of Theorem 42 that for any u ∈ V, the minimal slice T of an LFL
schema S such that S ∼=u T and M[[S]]jd 6= ⊥ ⇒ M[[T ]]jd 6= ⊥ always holds is precisely
the slice of S such that Symbols (T ) = NS(v) holds. The first author has proved in
[40] that this also holds if the linearity hypothesis is replaced by function-linearity
(a schema is function-linear if it does not contain more than one occurrence of the
same function symbol), provided that the definition of NS(u) is generalised to allow
for multiple occurrences of predicate symbols.
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If S is merely free and linear then S ∼=u T need not imply Symbols (T ) ⊇ NS(u), as
the example of Figure 6 shows. Owing to the constant g-assignment, S is not liberal,
though it is free. Clearly f ∈ NS(u) holds, but the slice of S obtained by deleting the
f -assignment, which is also free, is u-equivalent to S. It is also ω-equivalent to S, and
hence satisfies the termination requirement for slices.

It would be of interest to find a method of computing the minimal slice of S satisfying
these conditions under weaker hypotheses than the assumption that S is liberal, free
and function-linear.

15.2 Using Schema Transformations to Construct Equivalent Schemas

Given a linear schema S and u ∈ V ∪ {ω}, it can be shown using Theorem 55 that
the following transformations of S preserve u-equivalence.

• Changing the variables mentioned in S in any way that preserves u-similarity.
• Replacing S by a slice T of S, such that T contains every element of NS(u).
• Pulling out a subschema from an if subschema of S; that is, replacing a subschema

if p(v) then S1S2

else S3

of S by the schema

S1

if p(v) then S2

else S3

provided that this does not create a new fx-segment µ for f ∈ Funcs(S1) and
x ∈ NS(u)∪{u} such that either x = p or µ passes through <p = F>. Also, if u = ω
then S1 must not contain a while predicate, otherwise Condition (7) of similu is
violated. Clearly the true and false parts of p may be interchanged.

• Changing the order of ‘towers’ of if predicates; that is, interchanging p(u) and q(v)
in a subschema
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if p(u) then

{

if q(v) then T

else Λ

}

else Λ

of S. Again, the true and false parts of p or q may be interchanged.
• Replacing a subschema S1S2 of S by S2S1 to give a schema T , provided that no

variable is assigned in both S1 and S2, and S1S2 contains no fx-segment with
f ∈ Funcs(S1) and x ∈ Symbols(S2), and the same statement holds with (S, 1, 2)
replaced by (T, 2, 1).

We conjecture that given any LFL schema S, all u-similar LFL schemas can be ob-
tained from S by a sequence of these transformations and their inverses.
It may also be possible to prove that given an LFL schema S, any u-equivalent LFL
schema may be reached from S by a finite sequence of such transformations without
using Theorem 148, thus giving an alternative (and possibly shorter) way of proving
this theorem than the one we have given in this report.
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