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Abstract

We introduce a new non-strict semantics for a simple while language. We demonstrate that this semantics allows us to give a
denotational definition of variable dependence and neededness, which is consistent with program slicing. Unlike other semantics
used in variable dependence, our semantics is substitutive. We prove that our semantics is preserved by traditional slicing algorithms.
© 2007 Published by Elsevier Inc.
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1. Introduction

Program slicing [1] produces simpler programs from complicated ones and so can be thought of as a form of
program transformation. Traditional program slicing [1-4] is a technique for isolating the components of a program
which are concemed with the computation of a single variable or a set of variables at some point in the program.
Slices are constructed with respect to a slicing criterion, (V, n), for some set of variables V and a program point n.
Weiser’s definition of program slicing is based on statement deletion. A slice of a program P consists of any sub-set
of statements of P preserving the behaviour of the original program with respect to slicing criterion in all states where
the original program terminates. Program slicing has many applications including reverse engineering [5,6], program
comprehension [7,8], software maintenance [9-12], debugging [13-15,3], testing [16-20], component re-use [21,22],
program integration [23,24], and software metrics [25-27]. There are several surveys of slicing techniques, applications
and variations [28-30,31].

According to Weiser [4], a program and its (end) slice must agree with respect to the set of variables in the slicing
criterion. In other words, if we run the original program and the slice, then, in all states where the original terminates,
the slice must also terminate with the same final values for the variables in the slicing criterion. This is the correctness
criterion that needs to be proved for any slicing algorithm. The behaviour of the slice in states where the original does
not terminate is left undefined. In fact, traditional slicing algorithms sometimes introduce termination: the standard
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x:=1;
while (x>0) {y:=y+1;}

x:=5;

Fig. 1. A simple program P.

semantics of a program is thus, less defined than the semantics of some of its slices. For example, consider the program
P in Fig. 1. Clearly, P does not terminate, the final state after executing P is always L. However, the slice of P with
respect to x is just x : =5, which terminates in all states.

The standard semantics loses all semantic information beyond infinite loops. Therefore, it loses all information about
control and data dependencies, which is essential for program slicing. Because of this it is very hard to prove correctness
of slicing algorithm without the use some intermediate graph representation to track variable dependencies. Weiser [1]
in his thesis used the control flow graph as intermediate representation to prove correctness of his slicing algorithm.
Horwitz et al. [32] have shown that program dependence graphs [33,34], captures both control and data dependencies
which are essential for program slicing. They show that two programs with the same program dependence graph have
the same semantics. Since then much research has been carried out to define a semantics of program dependence
graphs [35]. Cartwright and Felleisen in [35] were first to observe and discuss that if a semantics is to be useful to
investigate semantic properties of program slicing, it has to be preserved by slicing algorithms. In [35], they defined a
non-strict semantics, called lazy semantics, for program dependence graphs of a simple while language, and claimed that
their semantics is preserved by slicing algorithms. For example, using the lazy semantics of Cartwright and Felleisen
[35] the lazy value of the variable x after executing the program in Fig. 1 is 5. Other efforts give a construction definition
of the program dependence graph by transforming the denotational semantics of imperative languages. The fact that
these semantics are defined for some intermediate graphs representations instead of the programming language itself
makes it difficult to model (prove correctness) program manipulation techniques such as slicing. Before we can start,
a semantics of the intermediate structure is required as well as mappings between programs and these intermediate
structures in both directions.

Giacobazzi and Mastroeni [36] argued that it is unnatural to try to prove correctness of slicing properties using the
standard semantics. They also argued that if a semantics is to be useful for modelling kinds of program manipulation
such as slicing it should be able to capture semantic information ‘beyond infinite loops’ and be compositional. They
do not consider the standard definition of compositionality of the semantics, where the semantics of the program is
defined in terms of the semantics of its sub-program. Their definition of compositionality is restricted to a sequence
of statements only. We call this property sequentiality of the semantics instead of compositionality, to avoid any
confusion with the standard definition of compositionality. They use transfinite states traces of programs [37] and show
the existence of such semantics using domain equations. They introduce a non-standard semantics, called transfinite
semantics using a metric structure on their value domains. Transfinite semantics of a program is defined in terms of
the set of all possibly transfinite computations: computations whose length can be any ordinal, finite or infinite.

The aim of this paper is to investigate slicing without intermediate structures. We regard the intermediate structures
as mere ‘implementation details’. Everything, the slicing algorithm and the semantics of the program language and the
‘correctness criteria’ of slicing are now expressed denotationally. This allows the possibility of using the full power
and elegance of denotational semantics in definitions and correctness proofs.

1.1. Variable dependence — Neededness

Central to slicing is the concept of variable dependence (or neededness as we call it): the set of variables needed by
a set of variables V in program P, noted as N (P, V). Intuitively, this is the set of variables whose initial value ‘may
affect’ the final value of at least one variable v in V after executing P. Our aim is to make the phrase ‘may affect’
semantically precise.

Neededness should be partial standard semantically discriminating (PSSD). This corresponds to our intuitive
understanding of neededness. i.e. if x and y are variables such that there exists two initial states o} and o2, differing
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x:=1; x:=1;

y:=1; y:=1;

while (x>0) {y:=y + 1;} while (x>0) {y:=y + 1;}

if (y>0) then x:=x; if (y>0) then skip;
Program P;. Program Ps.

Fig. 2. P) and P> do not have to same lazy semantics of Cartwright and Felleisen w.r.t. x.

only on y, such that the meaning of P gives rise to final terminating states with different values of x. Then y should
be needed by x with respect to P (y € N(P, {x})).
Finally we require neededness to be sub-sequential, in the sense that:

N(P; Q, V) € N(P,N(Q, V)).

If this was not the case, then it would mean that there was a variable z which affects the value of x in P; Q but for
no variable, k, which affects the value of x in Q, does z affect the value of k in P.

Standard semantics loses precision in the presence of infinite loops. Due to issues regarding non-termination, it turns
out to be hard, if it is not impossible, to define neededness in terms of the standard semantics. Much of our research
was trying to find a semantics which allowed us to define neededness satisfactorily that was consistent with standard
semantics.

1.2. Substitutivity

Definition 1 (Substitutivity). A semantic analysis is described as substitutive if, a sub-program Q of a program P
can be replaced with another semantically equivalent sub-program, Q’, and guarantee that the resulting program P’ is
semantically equivalent to our original program P.

Substitutivity of the semantics simplifies correctness proofs for the sorts of transformations described in this paper
and others, such as those used in amorphous slicing [38,39,40] where the program has to preserve only the semantics
but not necessarily the syntax.

Although the lazy semantics of Cartwright and Felleisen [35] is able to look beyond an infinite loop, it loses precision
for all variables defined in the body of an if or while statement in states where their corresponding predicate is evaluated
to L. This is due to the fact that the evaluation of any expression demands its controlled predicate to be evaluated first.
As a result of this the lazy semantics of Cartwright and Felleisen [35] is not substitutive.

For example, in the program P; defined in Fig. 2, the value of the variable y “after” executing the infinite loop is
undefined, and thus, sois the value of the if predicate. Therefore, the final value of the variable x demands the evaluation
of an undefined predicate and hence, using the lazy semantics by Cartwright and Felleisen [35], the final value of the

and have the same lazy

semantics, then if this semantics is substitutive, then, the program P; and P> should be equivalent with respect to it.
This however, is not the case as the final value when executing the program P is 1, which is different from L in the
case of Pj.

Giacobazzi and Mastroeni [36] have illustrated the importance of sequentiality' of semantics. Nothing is said about
substitutivity. Unsurprisingly their transfinite semantics is not substitutive. If an assignment to a variable x is controlled
by an undefined predicate,” then the transfinite semantics will map x to L. This implies that the transfinite semantics

variable x after executing the program P; is L. The assignment,

1 Compositional with regards to sequences only.
2 The predicate is evaluated to L.
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x:=1; x:=1;
y:i=1; yi=1;
while (x>0) {y:=-y;} while (x>0) {y:=-y;}
if (y>0) then x:=x; if (y>0) then skip;

——— E————
Program P,. Program Ps.

Fig. 3. P) and P> do not have the same transfinite semantics w.r.L. x.

of Giacobazzi and Mastroeni [36] is not substitutive:* we cannot replace a part of program with an equivalent program
and preserve the semantics of the original program.

Unlike the lazy semantics of Cartwright and Felleisen [35], the two programs P; and P> in Fig. 2 have the same
transfinite semantics as the value of the variable y after executing the first infinite loop is @ which is always greater
than 0.

Now consider the two programs P; and P> in Fig. 3. P and P> do not have the same transfinite semantics as the
assignment x :=x is controlled by an undefined predicate.

The main contribution of this paper is to give a denotational definition of a non-strict semantics, which is substitutive,
preserved by slicing algorithms and which is consistent with the standard semantics for terminating programs. We first
remind the reader of some results of the standard denotational semantics.

2. Standard denotational semantics

Denotational semantics [41], enables mathematical meaning to be given to programming languages. It combines
mathematic rigour and notational elegance [42].
In denotational semantics [41], astate, 0 € X, is a mapping from program variables in Variables to valuesinaset V.

Y| =X U_L=[Variables — V] U L.
For example, the functiono = {x +> 1, y > 2, z +> 3} is the state where the value of x is 1, the value of y is 2 and
the value of z is 3. The meaning of a program is given by a function from states to states:
M:P—3% + I,

where P is the set of all programs. M [[ p]lo represent the final state after executing the program p in the initial state o.
If the program p does not terminate in initial state o, then M [[p]lo has the special value L, known as bottom. In
standard semantics, in the bottom state all variables are deemed to have the value L. The bottom state is the state
that maps every variable name to _L. The final value of variable x after executing p in initial state o is thus written

M [[plo)x.

2.0.1. Ordering on states

In the standard denotational semantics [41], the ordering on states is such that two distinct non-terminating states
are incomparable and _L is less than every state. The reason an ordering is required is that the meaning of loop is defined
in terms of the least fixed point.

2.0.2. Evaluating expressions
The meaning of an expression e is given by the function E. It evaluates an expression in state to give a value.
E: E-X,+— V|,
where

Vi =V U{Ll).

3 Private communication.
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M:P - '\—:L » ‘\—:L
skip statement

M(skip] = Ao - o

abort statement

M{abort] = Xo - L

Assignment statements

Mlx:=e] = Ao - o[z — E[e]o]

(where the notation o[z « ¢] represents the function which is the

same as o except that x gets mapped to e.)

Sequences of statements

M5 S3] = Aa - M[S](M[Si]o)

if statements
MU[if(B) then Sy else So] = Ao - E[B]o — M[Si]o, M[Ss]o
(where the notation ¢ — b, ¢ is the expression which yields

b if e is True and ¢ if e is False).

while loops

M| while(B) S| = fix (\f - Ao - E[Blo — f(M[S]e).0))

Fig. 4. Standard denotational semantics.

2.0.3. Strictness of E in standard semantics

A function is strict if it gives L when applied to L. In standard semantics E is strict. In other words, evaluating every
expression in the L state will give the L value. Fig. 4 shows the meaning of each construct of the language considered
using the standard semantics.

Using Kleene’s Theorem [43] the least fixed point of a monotonic functional is the limit of an ascending chain of
functions. From this it follows that:

&
Lemma 2. M [while (B) S| = F;

i=0
where Fy=hio -1, Fiiy = o -E[[B]l, = Fi(M [S]lo), 0 and, F; T F;.; Vi > 0.

2.1. Unfolding of while loops

In [44.,45], unfoldings of a while loop were defined. The nth unfolding of the loop , W,,, ‘agreed’ with the loop in
all states where the loop terminates in n or fewer iterations. The meaning of the nth unfolding when applied to any
other state is L. The (n + 1)th unfolding is defined recursively in terms of the nth unfolding below:
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Definition 3 (Unfoldings)

Wy (B, S) = abort,
W,+1(B, S) = if (B) then S; W, (B, S) else skip,

for example the unfoldings of while(x > 0) x :=x + y; statement are defined as follows:

Wy = abort,
W, = if (x = 0) then x :==x + y; abort else skip
W, = if (x > 0) then x :=x + y; W) else skip

W, =if (x > 0) then x:=x + y; W,,_| else skip

We now show that the meaning of the while loop is the limit of the meanings of its unfoldings.

&
Lemmad. M [[while (B) S| = M [W;(B, 9]
i=0

Proof. From Lemma 2, we only need to prove that the lazy meaning of the ith unfolding is the same as F;. We prove
this lemma by induction oni. The base case is trivial as M [Wy(B, S)Jlo = M [[abort]l, =L o = Fy(o) forallo € .
Induction hypothesis: Assume forallo € £, M [[W;(B, S)lo = F;(o)and show that M [W; (B, S)]l, = Fi+1(0),
forallo € X.

M [[Wis1 (B, S)lo

= M [[if (B) S; W; (B, S) else skip]lo (By definition)

= E[BJlo — M [S; W;(B, S)llo, o (By if statement rule)
=E[Bllo - M [W;(B, $)(M [[Sllo), o (By sequence rule)

= E[Bllco - F,(M [S]o), o (By Induction hypothesis)
= Fis1(0).

Hence, forall i > 0, M [[W;(B, S)]| = F;. From which it follows immediately that the meaning of a while loop is
the limit of the meanings of its unfoldings. []

3. A lazy denotational semantics

In our semantics, same as in lazy semantics [35], variables are allowed to have a L value, i.e. some variables are
mapped to L and others to well defined values. Therefore we can have partially defined states. The set of such states
is denoted as .

=+ : Variables — V| ,
where
Vi=VUL.

V, is the union of the set of defined values, V, and the bottom value, L.
The ordering on £+ is now a richer ordering than on X, as used in the standard semantics where all non L states
were incomparable. For these partially defined states,

ol C oy < om(x)=L=0(x) =L Vx e Variables.

Since variables can be mapped to L we now have the possibility that evaluating an expression in a partially defined
state can yield L. A variable x referenced by an expression e does not necessarily mean it contributes to the evaluation
of e, for example, the value of the expression x — x is independent of the value of x. We define a function, det, which
takes an expression e and returns the set of variables referenced by e which contribute to the evaluation of e.
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Expression Ref(e)  det(e)

e:=x-x+y-z {x,y.z} {y.z}

e:=x+x+y-z {z,y,2} {z.y.z}

Fig. 5. Ref and det of an expression.

Definition 5 (der). The function det : E — P(Variables) is defined to reflect the variables determining the value of
expressions. Given an expression e, we say that a variable x is in det(e) if and only if there exists two states, o7 and
oy in X, differing only on the value of x with E;y[[e]lo) # Eazyllello2, where Eq;ylle]lo is the lazy value of the
expression e in a state o defined below.

If det(e) contains a variable which has L as a value in o, then the whole expression is evaluated to L in o.
Otherwise the lazy value, By, of an expression is the same as its strict value, E. The meaning of an expression in our
lazy semantics is, thus, the function:

Eiazy 1 E > TH +— V.

0
. 4 if 3v € det(e) withov =1,
given by Bazylello = E[lellc otherwise.

In Fig. 5 we show the difference between det(e) and the set of variables referenced by some expression, Ref(e).
Clearly det(e) € Ref(e).

The lazy meaning of a program is given by the function M j,.,, which, as in the case of standard semantics, is a
state to state function:

Mz : P— 28— 5t

The lazy semantics of each construct of our simple while language defined in Fig. 6. The lazy semantics of while
loops and if statements is given in terms of d operator, called meet operator. The meet operator is defined as follows:

Definition 6 (Meer - ). Let oy, 02, ..., 0y, be n states in £+ Then the meet of these states is defined as follows:
A ‘_D“"f’l(v) if o1(v) =0i(v) V16i6 n,
im0 T L otherwise.

Asitis shown in Fig. 6, the lazy meaning of skip statement is the identity function on states (the same as in standard
semantics). The lazy meaning of the abort statement is the same as lazy meaning of the skip statement. This is a
fundamental difference between lazy and standard semantics. Because of this, successive unfoldings of loops may not
be monotonic. As in standard semantics, the meaning of an assignment is obtained by updating the state with the new
value of the variable assigned to it. In the case of lazy semantics, this value is the lazy value of the corresponding
expression. Since in lazy semantics, there are states which map some variables to proper values and other variables to
L, the assignment rule implies that a variable can ‘recover’ from being undefined as shown in Fig. 7, where after the
loop x has the value L but it recovers to 5 after the assignment x :=5.

For a sequence of statements, the lazy meaning is simply the composition of the meanings of the individual
statements. For if statements, if the predicate of an if statement is evaluated to True or False the lazy meaning rules
are the same as those of the standard semantics. The only difference is when the guard evaluates to bottom. In this case
if a variable x is assigned different values in the rhen and else parts its value is L. On the other hand, the value of x is
the same in the then and else parts then this should be its final value even if the guard is L.

For example given an initial state o{x +> 1,y > 1,z +>_L} in £+, the value of the if predicate in the program in
Fig. 8 in o is equal to L. However, the value of the variable x after executing the rhen branch is the same as when
executing the else branch and is equal to 1. In this case the lazy value of the variable x after executing the program in
Fig. 8 in state o is equal to 1. Unlike the variable x, the value of the variable y is different when executing the then
branch from when executing else branch, and hence, the final value of the variable y is L.
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Mgy : P =S+ 0t

Lazy semantics of the skip statement

Miazy[skip] = Ao -0

Lazy semantics of the abort statement

/Mla;y[[(’bn"t] =\o-0

Lazy semantics of assignment statements

Miazy[x:i=e] = Ao+ olx — Euzyle]o]
(where the notation o[r < €] represents the function which is the

same as o except that z gets mapped to e.)

Lazy semantics of the sequences of statements

d'\/t[u:y[[sl ;S‘Z] = -‘Mluzyﬂs‘zﬂ o JMI"Z!} [[Sl]]

Lazy semantics of if statements
Mgz lif (B) then Sy else Ss)
= A0+ Elazy[Blo = Miazy[Si]o, Miazy[Sa]o. Miazy[Si]o T Miazy[Sa]o

(where the notation e — a, b, ¢ is the expression which yields a if € is

True, b if e is False and ¢ if e is L).

Lazy semantics of while loops

Migzy|while (B) S] = Ao - |_|(_(.',(r)

=0

where G0 = |_| Miazy[Wa(B, 9)]e.

G is just the meet of the lazy meaning of the n"

unfoldings, W,,
for all n = i. The unfolding is given in Definition 3, where the meet

is defined in Definition 6.

Fig. 6. Lazy denotational semantics.

For while loops, Given a state o and a variable x the final lazy value of x after executing a while loop starting in
state o is the limit of all the values of x after executing each of the unfoldings. If the limit does not exist, then we
define the final lazy value to be L. Here we mean the limit with respect to a discrete metric i.e. for the limit to exist,
there must exist an N € N such that all unfoldings greater than N give the same value for x in o. If this is the case
we say the value of x stabilises after N unfoldings. The lazy meaning of while loop is thus the limit of the meet of the

lazy meaning of all its corresponding unfoldings.

Although the M ;4 [[W, (B, S)]| is not monotonic, i.e. M j4;,[W, (B, )] is not necessarily less defined than
M 1‘,:,»[IW,,+| (B, S)], clearly G is less defined than G;+| (G; € G;+1), hence the least upper bound of the G; exists.
In states where the while loop does not terminate, if the value of the variable stabilises after i unfoldings for some
i > 0, then its meaning will be the stabilised value. Otherwise, its value is just L. For example, given the infinite loop
in the program in Fig. 9 the value of the variable x stabilises to | after the first unfolding whereas the value of the

variable y never stabilises. In this case, the lazy values of x and y are 1 and _L, respectively.
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Fig. 7. Recovering the value of x.

if (z>0)

then {x:=1; y:=2;}

Fig. 8. Withinitial state{x +> 1, y > 1,z +>_L}, x has 1 as its final value, whereas y has L.

In states where the predicate of the while loop evaluates to L, if the value of a variable is the same and equal to v
for all the unfoldings, after executing zero or more unfoldings, then its value is just v. And if otherwise the variable is
evaluated to L.

For example, after executing the first infinite loop in the program in Fig. 10, the value of the variable y is undefined
and therefore, the condition of the second while loop is undefined. However, the value of the variable x does not change
and is equal to 1 after executing the body of the loop zero, a finite or infinite number of times. In this case the value of
the variable x after executing the second loop is equal to 1. Unlike, the variable x, the variable z has a different value
when the body of the while is not executed at all, which is 1, from its value when the body is executed, which is equal
to 2. In this case the final value of the variable z is equal to L.

The example in Fig. 10 illustrates the difference of our semantics with both the lazy semantics of Cartwright and
Felleisen [35] and the transfinite semantics by Giacobazzi and Mastroeni [36]. The final value of the variable x, in both
these semantics, when executing the program in Fig. 10 is L.

An important property of our lazy semantics is that for terminating programs, it agrees with the standard semantics.

Theorem 7. Let P be a program and o be a state in X, then,
M [Plloc #L =M j;y[Pllo = M [P]lo.
Proof. This is proved by structural induction over the language being considered, as follows.

skip statement
Trivial as M ;.. [skipllo = o = M [skip]lo forall o in X.

abort statement
The result is vacuously true as, M [abort]lo = L forall o in X.

Assignment statements
Trivial, as B4y [[elo = E[[e]lo, forallo € .

Conditional statements

Induction hypothesis: Assume that the result holds for two given programs S and S>.

Let B be a boolean expression, we need to show that the result holds for if (B) then S) else S>.

Let o be a state in X with M [[if (B) then S) else S:]lo # L. As o is a state in X then Ey4., [ Bllo = E[Bllo # L.

If E[Bllo = True, then M [[if (B) then S) else S>]lo is reduced to just M [S) [lo and M 4., [[if (B) then S| else S:|lo
is reduced to just M ;4 [S)]lo. Thus, the result follows immediately from the induction hypothesis. Similarly, if
E[Bllo = False as M [[if (B) then S| else S:]lo is reduced to just M [S>]lo and M 4., [lif (B) then S else S]lo is
reduced to just M ;. [ S2]lo.
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while (True) { x:=1; y:=y+1;}

Fig. 9. The lazy value of x is 1 and of yis L.

while (True)

{ if(y>0) then y:=-1;
else y:=1;

}

while (y>0) { x:=1; z:=2;}

Fig. 10. x is evaluated to 1 where the final value of z is L.

Sequences
Induction hypothesis: Assume that the result holds for two given programs S} and S;.
We must show that the result holds for S;; S2 We must show that:

M [S1; S2lle # L= M 14y [S1; S2llo = M [S): S2]lo

holds for all o in 2.
Leto beastate in £ withM [[S}; S;]lo # L. Hence, M [S: (M [[S;]lo) # L and M [[S;]lo # L. Theresult follows
immediately by application of the semantics rule for sequences and the induction hypothesis:

M lu:y[ISl: Slle =M Iu:_\'ﬂSZII(M lu:_\’ﬂslna) (By definition)
=M [S2(M [[S1]l0) (Induction hypothesis)
=M [[S: S2]lo.

while Loops
Induction hypothesis: Let S be a program and assume that forall o in X, if M [S]lo # L then M lazyl[Sllo = M [S]o.
Show that:

M [lwhile (B) Sllo # L= M 4. [Iwhile (B) Sllo = M [while (B) Slo

holds for all & in .

Let o be a state in X, such that while (B) S terminates on o. Let us say it terminates after n iterations, then
M ([while (B) STlo = M [W;(B, S)]lo for all i > n. Thus using the definition of the lazy meaning of while loops, it
suffices to show that for all i > 0,

M [Wi(B, )l o # L= M 14, [[Wi(B, ) o = M [[W;(B, )] o.

We show this by induction oni. M [W(B, S)]lo = L, then the base case is vacuously true. We now assume that the
result holds for ith unfolding: for allo € X, if M [W; (B, S)]lo # L then M 4., [W;(B, $)]lo =M [[W;(B, S)]o.
Leto be astate in X, with M [W; (B, S)]lo # L. We must show that M ;,.,[[W;41 (B, S)llo =M [W,41(B, S)]o.
If E[ Bllo = False,then M ;. [W; (B, S)]lo =M [[W; 41 (B, S)llo =o0.

If otherwise, E[Bllo = True, then M [W; (B, S)]lo is reduced to just the standard meaning of S;W;(B, S),
M [W;(B, $)I(M [[S]lo), and in the same way M 4., [W;,1(B, S)llo is reduced to just M ;4. [W;(B, S)I(M 42y
[[STlo ). And the result follows immediately by application of the induction hypothesis on S and i. Thus completing the
proof. []
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y:=0;

while (y > 0) {x:=0;}

Program P;. Program Ps.

Fig. 11. P) and P have the same lazy semantics w.r.t. the variable x.

x:=1;
y:=0;
while (y=0) {y:=y+1;}

x:=0;

A program P. End-slice of P w.r.t. .

Fig. 12. P and its end-slice have the same lazy semantics w.r.t. x.
3.1. Lazy semantics is substitutive

Program transformation is a form of program analysis or manipulation. Program transformation alters the syntax of
a program while preserving its semantics: We can substitute some parts of a program by their corresponding equivalent
and still preserve the semantics of the original program. Therefore, substitutivity (see definition 1) is an important
property a semantics should have if it is to be useful to prove correctness of program transformation algorithms
slicing [39,38,40]. Unlike the semantics of Cartwright and Felleisen [35] and the transfinite semantics of Giacobazzi
and Mastroeni [36], the following theorem shows that our lazy semantics is substitutive.

Theorem 8 (Our lazy semantics is substitutive). Let P be a program and P’ be a program obtained by replacing a
sub-program, Q, of P by a Q'. Then

M Iu:,v[[Ql] =M Iu:,\'ﬂQ’]] =M lu:y[lP]] =M Iu:,\'[[P’]]-

Proof. This is proved by structural induction over the language being considered. The result for base case is trivial as
abort , skip and assignment statements are atomic statements.

Conditional statements
Induction hypothesis: Assume that the result holds for two given programs S} and S>.
Let S| be a program obtained by replacing a sub-program, Q, of S; by an equivalent program Q' and let S} be
a program obtained by replacing a sub-program, Q», of $> by an equivalent program Q. We need to show that:
M 1uzyllif (B) then Sy else S]] = M 142, [lif (B) then S| else S5 ].
Let o be a state in X+, then
M 1azyllif (B) then S| else S} |lo
= A0 - Elu:.\‘IIBHU - M Iu:_\'ﬂsi o.M lu:)'[IS;’Z]]U' M Iu:,\‘llsi lenM lz::y[[sélla (By definition)
=10 - Ezy[Bllo = M 14y [S110. M 142y [S2110. M 142y [S1lo MM 44z [S2lle (Induction hypothesis)
=M 142y [lif (B) then Sy else $:]lo.
Sequences
Induction hypothesis: Assume that the result holds for two given programs S} and S>.
Let S| be a program obtained by replacing a sub-program, Q1, of S| by an equivalent program Q| and let S; be a
program obtained by replacing a sub-program, 0>, of S> by an equivalent program Q. We need to show that:

M Iu:_\'[[S; ;Séll =M Iu:y[[sl ; 211
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Let o be a state in £+, then

M lu:.\’[ls;: Sé]]O' =M la:.\'lls‘;_ll(M Itt:)'[[S;ﬂa) (By definition)
=M 14y [S21(M 142y [S1]lo)  (By induction hypothesis)
=M 145y[[51: S2llo.
while Loops
Induction hypothesis: Assume that the result holds for a program §.
Let §” be a program obtained by replacing a sub-program, Q, of S by an equivalent program Q’. We need show that:
M jazyliwhile (B) Sl = M j42y [while (B) S].
by applying the induction hypothesis and the result for if statements, we have
M lll:)'[lwf(B~ S,)]I =M Iu:_\'[IWI(B- ST vi> 0.

Hence, by applying the definition of the lazy semantics of while loops, the result for while loops follows immediately.
Thus completes the proof. []

In the following section we will define the semantics of slicing using lazy semantics.

4. Defining slices using lazy semantics

We define P and Q to be V-lazy equivalent if and only if they have the same lazy semantics with respect to the set
of variables V.

Definition 9 (V-lazy equivalence). Let V be a set of variables and P and Q be two programs. We say P and Q are
V-lazy equivalent if and only if for all o in >+ and for all Xin V, M lazy[Pllox = M lazy [ @llo X. This is clearly an
equivalence relation.

We write P X O to denote that P and Q are V-lazy equivalent.

Fig. 11 shows two programs, Pj and P>, with the same lazy semantics with respect to x. i.e. P d Ps.

Definition 10 (Weiser’s semantic definition of a slice). Let V be a set of variables and P and Q be two programs. We
say that Q is a slice of P with respect to V if and only if, forall o in X,

M [[Pllo # L= M [Pllox = M [Q]lox Vx € V.

The program P in Fig. 12 does not terminate. Using Weiser's semantic definition, the slice of the program P can be
anything. This is a result of the fact that Weiser’s definition does not take into account non-termination.

Unlike Weiser’s standard semantic definition of a slice, Definition 10, we require a slice to preserve the semantics
of the original in all states, not just for ones where the program terminates. We do not wish to allow arbitrary semantics
for slices of non-terminating programs since Weisers’s algorithm does not behave in an arbitrary way in these cases.
We now give a new semantic definition of a slice, called a lazy V-slice, which we prove to be consistent with Weiser’s
one.

Definition 11 (Lazy V-slice). Let P and P) be two programs, and V be a set of variables. We say Pj is a lazy V-slice
of a program P if and only if

PXP, and M[Pllo £L=MI[P/Jlo #L Vo eX).

Using our new lazy semantic definition of a slice, it is clear that x :=0; is a semantically valid slice of the program P
in Fig. 12 on p. 201.
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Our definition of a lazy V-slice is one that preserves termination and lazy semantics of the original program projected
onto all variables in V. Weiser’s semantics definition of a slice is one that preserves termination and the projected
standard semantics onto V only for terminating programs. Our lazy semantics agrees with the standard semantics in
all states where the program terminates (see Theorem 7, p. 199). From this it follows immediately that any slice which
satisfies our new definition also satisfies Weiser’s semantic definition of slicing.

5. Lazy neededness

Program slicing can introduce termination [4]. Because of this it is hard to give a denotational definition of variable
dependence which is consistent with program slicing in terms of the standard semantics. In this section we define
neededness in terms of our lazy semantics, called lazy neededness, and show that it satisfies the neededness criterion;
i.e. it is standard semantically discriminating (PSSD) and it is sub-sequential (for PSSD and sub-sequentiality see
Section 1.1, p. 192).

Definition 12 (Lazy needed: Nj,-y)
Niazy : S x P (Variables) — P (Variables),

where S is the set of programs and Variables is the set of program variables. A variable y is in Ny, (P, V) if and only
if there is a variable X in V, and two states, o} and o7 in X+, differing only on the value of the variable Y, such that:

M lazyllpllo1X # M Iu:_\‘ﬂl’]]a?_x-

From the definition of lazy neededness and Theorem 7 which states that the standard semantics and lazy semantics
agree for terminating programs, it follows that lazy neededness is standard semantically discriminating (PSSD).

We now show that lazy neededness, Nj,y, defined in Definition 12 is both sub-sequential. Some intermediate
results, exploring some properties of lazy neededness, are now given.

We begin by showing that lazy neededness of a program with respect to a set of variables V is just the union of its
lazy neededness with respect to each one of the variables in V.

Lemma 13. Given a set of variables V and program P then,

(
NI¢1:)'(P~ V) = Nldz,\'(P- {x}).
XeVv

Proof. This follows immediately from Definition 12. []

By definition, the lazy needed set of variables of a program P with respect to a set of variables V is the set of
variables for which the initial value might affect the lazy final value of some of the variables in V after executing P.
Therefore, if two states, o7 and 07 in £+ agree on all elements in N ., (P, V) then the meaning of P in o) and in o7
agree on all elements in V. The following lemma shows that our lazy semantics satisfies this property.

Lemma 14. Given a set of variables V, a program P and two states, o) and o3, differing only on a set Vy of elements
notin Nigzy(P, V), then

M lazyl[Pllo1x = M lazy[Plloax Vx € V.

Proof. We show this by contradiction. By Lemma 13, it suffices to show the result for V = {x}. Suppose there
exists two states, o and o7, differing only on elements in Vj, with M lazyl[Pllorx # M tazyl[[Pllo2x. And choose
o1 and o7 to be the states differing on a minimal set, W € Vp, with M ;.\ [Pllo1x # M 14z, [ Plloax. Clearly W # #,
so choose y € W and let o = o[y < 02(y)]. By the minimality follows M ;,.,[P]o{x = M 14y [ Plloax. Thus,
M 1azy [ Pllojx # M j4zy[[P]lorx. This contradicts the minimality of W unless W = {y}. In this case, by definition,
v € Njazy (P, {x}) which contradicts the hypothesis. []
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if (y=0)
then x:=0;

else x:=1;

Fig. 13. A simple program P.

The example in Fig. 13 illustrates this property. N ., (P, {x}) = {y}. The value of the variable x after executing P
is always equal to 0 in all states where the value of y is 0. In all other states the value of x is equal to 1.

Given an expression e, if a variable x is not in det(e) then the initial value of x does not affect the value of the
expression e. Therefore, the value of e in all states which agree in all elements in det(e) is the same. The following
lemma illustrates this.

Lemma 15. Let e be an expression, and oy, o3 be two states in £+, differing only on a set V of variables not in
det(e), then Elu:_\-[[ellal = Elu:_v[le]]U?_-

Proof. This is entirely similar to the proof of Lemma 14. []

5.1. Lazy neededness is sub-sequential

In Section 1, we have plained our intuitive reasons why neededness has to satisty the sub-sequentiality property.
The objective of this section is to show that our definition of neededness, lazy neededness, satisfies this property.

Theorem 16. Let Py and P> be two programs and V a set of variables, then

Nlu:.\'(Pl: P, V) C Nltl:)'(Pl- Nlu:y(PZ- V).

Proof. By Lemma 13, it suffices to show the theorem holds when V' = {x}. Let o] and o7 be two states differing
only on the value of y, which is not in N,y (Py, Njgzy (P2, {x})). Hence, by Lemma 14, it follows that M .. [ P ]loy
and M 4., [ P1]lo) agree in all elements in N,y (P2, {x}). Thus, by Lemma 14, if follows that

M I(l:)'[IPZH(M lazy[P1lloy)x = M Iu:)‘IIPZH(M lazy [ P11lo2)x

M lazy[[P1; Ployx =M Ill:)‘ﬂpl: Prllozx.

Hence, the variable y is not in Ny, (Py; P2, {x}) Thus, the result follows. []

Theorem 16 shows that lazy neededness satisfies the sub-sequentiality property.

6. Related work

A slice of a program can halt even if the original program does not terminate. Hence, the standard semantics is not
preserved by program slicing algorithms. The semantics of different intermediate graph representation, such as the
control flow graph [ 1] or the program dependence graph [33,34] has been used to investigate the semantics properties of
programslicing [32,46,35]. Horwitz et al. [32], have shown that behaviour of a program is captured by its corresponding
program dependence graph. They show that if the program dependence graphs of two programs are isomorphic, then
the programs have the same semantics.

Cartwright and Felleisen [35] observed and discussed that if a semantic is to be useful to investigate semantics
properties of program slicing, it has to be preserved by slicing algorithms with respect to slicing criterion. In [35],
they defined a non-strict semantics for program dependence graphs of a simple while language and claimed that their
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semantics is preserved by slicing algorithms. Venkatesh [47] used Cartwright and Felleisen’s lazy semantics to give a
semantic justification of program slicing.

Giacobazzi and Mastroeni [36] argued that it is unnatural to try to prove correctness of slicing properties using the
standard semantics. They also argued that if a semantics is to be useful for modelling program slicing manipulation
techniques it should be able to capture semantic information ‘beyond infinite loops’ and be sequential. As it has been
shown in Section 1, neither the semantics of Cartwright and Felleisen given in [35] nor the one of Giacobazzi and
Mastroeni given in [36] is substitutive. In this paper a new denotational semantics which is substitutive and preserved
by slicing is given.

7. Conclusion and future work

The standard semantics is not preserved by slicing algorithms. As a result of this, it is very hard to prove correctness
of program transformation such as program slicing using the standard denotational semantics without the use of
some intermediate graph representations. Different intermediate graph representations such as program dependence
graphs [32,35] have been used to investigate the semantic properties of program slicing algorithms. Proving correctness
of slicing algorithms using a semantics which is not preserved by slicing, proved to be very hard.

In this paper we have introduced a new non-strict semantics for a simple while language. Our new semantics allows
us to give a denotational definition of variable dependence and neededness, which is consistent with program slicing.
Finally, our semantics is proved to be preserved by slicing algorithms, which makes it very useful to prove correctness
of slicing algorithms. Furthermore, in Theorem 8, we have shown that our new semantics is substitutive. This property
is very useful in proving correctness of the kind of transformations discussed in this paper.

A future direction of our research is to attempt to prove correctness of existing intraprocedural slicing algorithms
such as Hausler’s slicing algorithm [48], using our new semantics. We also intend to extend our semantics to handle
real program features, such as procedures and recursion.
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