Weiser's Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas

Mike Laurence

Department of Computing, Goldsmiths College, London, UK

July 11, 2008

・ 回 ト ・ ヨ ト ・ ヨ ト

Weiser's Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas

Mike Laurence

Department of Computing, Goldsmiths College, London, UK m.laurence@gold.ac.uk

A *schema* is like a program except that real functions and real predicates are replaced by symbols referring to functions and predicates.

A *schema* is like a program except that real functions and real predicates are replaced by symbols referring to functions and predicates.

A schema thus represents an entire class of programs, depending on how the function and predicate symbols are interpreted.

$$\begin{aligned} x &:= a(); \\ y &:= b(); \\ while \ p(y) \\ & \begin{cases} \\ y &:= f(y); \\ x &:= g(x, y); \\ \end{cases} \end{aligned}$$

Here is a schema.

- 4 回 2 - 4 □ 2 - 4 □

$$\begin{array}{l} x := 0; \\ y := 0; \\ while (y < 100) \\ \{ \\ y := y + 1; \\ x := x + y; \\ \} \end{array}$$

Here is one of the programs that it represents.

・回 と ・ ヨ と ・ ヨ と

э

Program Transformation

・回 ・ ・ ヨ ・ ・ ヨ ・

- Program Transformation
- Program Comprehension

伺い イヨト イヨト

- Program Transformation
- Program Comprehension
- Program Slicing

向下 イヨト イヨト

Definition A schema T is a *slice* of a schema S if T is obtained from S by deleting statements from S;

Definition A schema T is a *slice* of a schema S if T is obtained from S by deleting statements from S;

formally, a slice is defined recursively by the following rules;

skip

is a slice of every schema.

(1日) (日) (日)

Slices of sequences of schemas

• S_1 skip and skip S_2 are slices of $S_1 S_2$;

・ 回 ト ・ ヨ ト ・ ヨ ト

Slices of sequences of schemas

- S_1 skip and skip S_2 are slices of $S_1 S_2$;
- $S_1 skip S_3$ is a slice of $S_1 S_2 S_3$.

・ 同 ト ・ ヨ ト ・ ヨ ト

If S' is a slice of S then

while p(v) do S'

is a slice of

while p(v) do S.

• 3 3

Suppose

if
$$q(u)$$
 then S'_1 else S'_2

is a slice of

if q(u) then S_1 else S_2 .

-

Definition Given a schema S, a slice T of S and variable v;

► T is a v-slice of S if T preserves termination and the final value of v. **Definition** Given a schema S, a slice T of S and variable v;

- ► T is a v-slice of S if T preserves termination and the final value of v.
- T is a v-path-faithful slice of S if T preserves termination and the final value of v and also the executed path through S.

Definition Given a schema S, and variable v, Weiser's slice $\mathcal{W}(S, v)$ is the minimal slice of S which is closed under

backward data dependence, and

Definition Given a schema S, and variable v, Weiser's slice $\mathcal{W}(S, v)$ is the minimal slice of S which is closed under

- backward data dependence, and
- control dependence.

Definition Given a schema S, and variable v, Weiser's slice $\mathcal{W}(S, v)$ is the minimal slice of S which is closed under

- backward data dependence, and
- control dependence.

Theorem[M R Laurence, PLID 2008] $\mathcal{W}(S, v)$ is a *v*-path-faithful slice of *S*.

向下 イヨト イヨト

while
$$q(u)$$

{
 $u := k(u);$
 $if p(w)$ then

{
 $v := g();$
 $w := f(w);$
}
else skip
}

イロト イポト イヨト イヨト

3

while
$$q(u)$$

{
 $u := k(u);$
 $if p(w)$ then

{
 $v := g();$
 $w := f(w);$
}
else skip
}

・ロン ・回と ・ヨン・

while q(u)u := k(u);if p(w) then v := g();w := f(w);skip else

→ ∃ >

while q(u)u := k(u);if p(w) then v := g();w := f(w);skip else

- - E - F

while q(u)u := k(u);if p(w) then v := g();w := f(w);skip else

- - E - F

while q(u)u := k(u);if p(w) then v := g();w := f(w);skip else

- - E - F

however,

S has a smaller slice T given by deleting the assignment w := f(w); from S.

T is a v-slice

伺 ト イヨト イヨト

however,

S has a smaller slice T given by deleting the assignment w := f(w); from S.

T is a v-slice

but not a v-path-faithful slice.

Weiser's algorithm does not always produce *minimal v*-slices, and

Weiser's algorithm does not always produce *minimal v*-slices, and

v-slices need not be path-faithful.

Let S' be the schema

while
$$p(u) \ v := g()$$
.

御 と く ヨ と く ヨ と …

Let S' be the schema while $p(u) \ v := g()$. Here, $\mathcal{W}(S', v) = S'$, but

伺 ト イヨト イヨト

Let S' be the schema while $p(u) \ v := g()$. Here, $\mathcal{W}(S', v) = S'$, but skip

is a v-path-faithful slice of S'.

Weiser's algorithm does not always produce *minimal* path-faithful slices.

向下 イヨト イヨト

Definition A schema is

linear if it has no repeated function *or* predicate symbols;

A 3 1 A 3 1

Definition A schema is

- *linear* if it has no repeated function *or* predicate symbols;
- function-linear if it has no repeated function symbols.

Definition A schema S is

 free if every path through S is executable for some interpretation of its symbols and some initial state;

Definition A schema S is

- free if every path through S is executable for some interpretation of its symbols and some initial state;
- *liberal* if for every executable path ρ through S, there is an interpretation of its symbols and an initial state such that the same expression is not generated more than once along ρ.

(B) (B)

Freeness ⇒ liberality

The schema

is free and linear but not liberal.

個 と く ヨ と く ヨ と

The schema

while p(w)skip

is liberal and linear but not free.

伺い イヨト イヨト

Theorem[M R Laurence, JLAP 2005]

Let S be a free, liberal, function-linear schema and let v be a variable.

Then the slice $\mathcal{W}(S, v)$ of S is the minimal v-slice of S.

Theorem[M R Laurence, PLID 2008]

Let S, be a free, function-linear schema and let v be a variable.

Then the slice $\mathcal{W}(S, v)$ of S is the minimal path-faithful v-slice of S.