
Weiser’s Algorithm Computes Minimal
Path-Faithful Slices of Function-linear, Free

Program Schemas

Mike Laurence

Department of Computing, Goldsmiths College, London, UK

July 11, 2008

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Weiser’s Algorithm Computes Minimal

Path-Faithful Slices of Function-linear, Free

Program Schemas

Mike Laurence

Department of Computing, Goldsmiths

College, London, UK

m.laurence@gold.ac.uk

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Introduction to program schemas

A schema is like a program except that real

functions and real predicates are replaced by

symbols referring to functions and predicates.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Introduction to program schemas

A schema is like a program except that real

functions and real predicates are replaced by

symbols referring to functions and predicates.

A schema thus represents an entire class of

programs, depending on how the function

and predicate symbols are interpreted.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



x := a();

y := b();

while p(y)

{

y := f (y);

x := g(x , y);

}

Here is a schema.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



x := 0;

y := 0;

while (y < 100)

{

y := y + 1;

x := x + y ;

}

Here is one of the programs that it

represents.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Applications of schemas

I Program Transformation

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Applications of schemas

I Program Transformation

I Program Comprehension

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Applications of schemas

I Program Transformation

I Program Comprehension

I Program Slicing

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Slices of schemas

Definition A schema T is a slice of a

schema S if T is obtained from S by deleting

statements from S ;

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Slices of schemas

Definition A schema T is a slice of a

schema S if T is obtained from S by deleting

statements from S ;

formally, a slice is defined recursively by the

following rules;

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



skip rule;

skip

is a slice of every schema.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Slices of sequences of schemas

I S1skip and skipS2 are slices of S1S2;

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Slices of sequences of schemas

I S1skip and skipS2 are slices of S1S2;

I S1skipS3 is a slice of S1S2S3.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Slices of while statements

If S ′ is a slice of S then

while p(v) do S ′

is a slice of

while p(v) do S .

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Slices of if statements

Suppose

I S ′
1 is a slice of S1, and

I S ′
2 is a slice of S2,

then

if q(u) then S ′
1 else S ′

2

is a slice of

if q(u) then S1 else S2.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Two semantic slicing criteria for schemas

Definition Given a schema S , a slice T of S

and variable v ;

I T is a v -slice of S if T preserves

termination and the final value of v .

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Two semantic slicing criteria for schemas

Definition Given a schema S , a slice T of S

and variable v ;

I T is a v -slice of S if T preserves

termination and the final value of v .

I T is a v -path-faithful slice of S if T

preserves termination and the final value

of v and also the executed path through

S .

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Weiser’s Slicing Algorithm

Definition Given a schema S , and variable

v , Weiser’s slice W(S , v) is the minimal slice

of S which is closed under

I backward data dependence, and

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Weiser’s Slicing Algorithm

Definition Given a schema S , and variable

v , Weiser’s slice W(S , v) is the minimal slice

of S which is closed under

I backward data dependence, and

I control dependence.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Weiser’s Slicing Algorithm

Definition Given a schema S , and variable

v , Weiser’s slice W(S , v) is the minimal slice

of S which is closed under

I backward data dependence, and

I control dependence.

Theorem[M R Laurence, PLID 2008]

W(S , v) is a v -path-faithful slice of S .

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



An example of Weiser’s algorithm for a schema S

while q(u)

{

u := k(u);

if p(w) then

{

v := g();

w := f (w);

}

else skip

}
Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



An example of Weiser’s algorithm for a schema S

while q(u)

{

u := k(u);

if p(w) then

{

v := g();

w := f (w);

}

else skip

}
Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



An example of Weiser’s algorithm for a schema S

while q(u)

{

u := k(u);

if p(w) then

{

v := g();

w := f (w);

}

else skip

}
Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



An example of Weiser’s algorithm for a schema S

while q(u)

{

u := k(u);

if p(w) then

{

v := g();

w := f (w);

}

else skip

}
Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



An example of Weiser’s algorithm for a schema S

while q(u)

{

u := k(u);

if p(w) then

{

v := g();

w := f (w);

}

else skip

}
Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



An example of Weiser’s algorithm for a schema S

while q(u)

{

u := k(u);

if p(w) then

{

v := g();

w := f (w);

}

else skip

}
Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Thus, W(S , v) = S in this case;

however,

S has a smaller slice T given by deleting the

assignment w := f (w); from S .

T is a v -slice

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Thus, W(S , v) = S in this case;

however,

S has a smaller slice T given by deleting the

assignment w := f (w); from S .

T is a v -slice

but not a v -path-faithful slice.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Conclusion from schema S

Weiser’s algorithm does not always produce

minimal v -slices, and

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Conclusion from schema S

Weiser’s algorithm does not always produce

minimal v -slices, and

v -slices need not be path-faithful.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Another example of Weiser’s algorithm for a schema

Let S ′ be the schema

while p(u) v := g().

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Another example of Weiser’s algorithm for a schema

Let S ′ be the schema

while p(u) v := g().

Here, W(S ′, v) = S ′, but

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Another example of Weiser’s algorithm for a schema

Let S ′ be the schema

while p(u) v := g().

Here, W(S ′, v) = S ′, but

skip

is a v -path-faithful slice of S ′.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Conclusion;

Weiser’s algorithm does not always produce

minimal path-faithful slices.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Linear and Function-linear Schemas

Definition A schema is

I linear if it has no repeated function or

predicate symbols;

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Linear and Function-linear Schemas

Definition A schema is

I linear if it has no repeated function or

predicate symbols;

I function-linear if it has no repeated

function symbols.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Free and Liberal Schemas

Definition A schema S is

I free if every path through S is executable

for some interpretation of its symbols and

some initial state;

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Free and Liberal Schemas

Definition A schema S is

I free if every path through S is executable

for some interpretation of its symbols and

some initial state;

I liberal if for every executable path ρ

through S , there is an interpretation of its

symbols and an initial state such that the

same expression is not generated more

than once along ρ.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Freeness ; liberality

The schema

while p(w) {

w := f (w);

v := g();

}

is free and linear but not liberal.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Liberality ; freeness

The schema

while p(w)skip

is liberal and linear but not free.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Slicing free, liberal, function-linear Schemas

Theorem[M R Laurence, JLAP 2005]

Let S be a free, liberal, function-linear

schema and let v be a variable.

Then the slice W(S , v) of S is the minimal

v -slice of S .

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Slicing free function-linear Schemas

Theorem[M R Laurence, PLID 2008]

Let S , be a free, function-linear schema and

let v be a variable.

Then the slice W(S , v) of S is the minimal

path-faithful v -slice of S .

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas


