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Introduction to program schemas

A schema is like a program except that real

functions and real predicates are replaced by

symbols referring to functions and predicates.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Introduction to program schemas

A schema is like a program except that real

functions and real predicates are replaced by

symbols referring to functions and predicates.

A schema thus represents an entire class of

programs, depending on how the function

and predicate symbols are interpreted.
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x := a();

y := b();

while p(y)

{

y := f (y);

x := g(x , y);

}

Here is a schema.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



x := 0;

y := 0;

while (y < 100)

{

y := y + 1;

x := x + y ;

}

Here is one of the programs that it

represents.
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Applications of schemas

I Program Transformation
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Applications of schemas

I Program Transformation

I Program Comprehension
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Applications of schemas

I Program Transformation

I Program Comprehension

I Program Slicing
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Slices of schemas

Definition A schema T is a slice of a

schema S if T is obtained from S by deleting

statements from S ;
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Slices of schemas

Definition A schema T is a slice of a

schema S if T is obtained from S by deleting

statements from S ;

formally, a slice is defined recursively by the

following rules;
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skip rule;

skip

is a slice of every schema.
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Slices of sequences of schemas

I S1skip and skipS2 are slices of S1S2;
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Slices of sequences of schemas

I S1skip and skipS2 are slices of S1S2;

I S1skipS3 is a slice of S1S2S3.
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Slices of while statements

If S ′ is a slice of S then

while p(v) do S ′

is a slice of

while p(v) do S .
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Slices of if statements

Suppose

I S ′
1 is a slice of S1, and

I S ′
2 is a slice of S2,

then

if q(u) then S ′
1 else S ′

2

is a slice of

if q(u) then S1 else S2.
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Two semantic slicing criteria for schemas

Definition Given a schema S , a slice T of S

and variable v ;

I T is a v -slice of S if T preserves

termination and the final value of v .
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Two semantic slicing criteria for schemas

Definition Given a schema S , a slice T of S

and variable v ;

I T is a v -slice of S if T preserves

termination and the final value of v .

I T is a v -path-faithful slice of S if T

preserves termination and the final value

of v and also the executed path through

S .
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Weiser’s Slicing Algorithm

Definition Given a schema S , and variable

v , Weiser’s slice W(S , v) is the minimal slice

of S which is closed under

I backward data dependence, and
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Weiser’s Slicing Algorithm

Definition Given a schema S , and variable

v , Weiser’s slice W(S , v) is the minimal slice

of S which is closed under

I backward data dependence, and

I control dependence.
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Weiser’s Slicing Algorithm

Definition Given a schema S , and variable

v , Weiser’s slice W(S , v) is the minimal slice

of S which is closed under

I backward data dependence, and

I control dependence.

Theorem[M R Laurence, PLID 2008]

W(S , v) is a v -path-faithful slice of S .
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An example of Weiser’s algorithm for a schema S

while q(u)

{

u := k(u);

if p(w) then

{

v := g();

w := f (w);

}

else skip

}
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An example of Weiser’s algorithm for a schema S
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An example of Weiser’s algorithm for a schema S

while q(u)
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if p(w) then

{

v := g();

w := f (w);

}

else skip

}
Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



An example of Weiser’s algorithm for a schema S

while q(u)
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if p(w) then

{
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An example of Weiser’s algorithm for a schema S

while q(u)

{

u := k(u);

if p(w) then

{

v := g();

w := f (w);

}

else skip
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An example of Weiser’s algorithm for a schema S

while q(u)

{

u := k(u);

if p(w) then

{

v := g();

w := f (w);

}

else skip

}
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Thus, W(S , v) = S in this case;

however,

S has a smaller slice T given by deleting the

assignment w := f (w); from S .

T is a v -slice
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Thus, W(S , v) = S in this case;

however,

S has a smaller slice T given by deleting the

assignment w := f (w); from S .

T is a v -slice

but not a v -path-faithful slice.
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Conclusion from schema S

Weiser’s algorithm does not always produce

minimal v -slices, and
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Conclusion from schema S

Weiser’s algorithm does not always produce

minimal v -slices, and

v -slices need not be path-faithful.
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Another example of Weiser’s algorithm for a schema

Let S ′ be the schema

while p(u) v := g().
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Another example of Weiser’s algorithm for a schema

Let S ′ be the schema

while p(u) v := g().

Here, W(S ′, v) = S ′, but
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Another example of Weiser’s algorithm for a schema

Let S ′ be the schema

while p(u) v := g().

Here, W(S ′, v) = S ′, but

skip

is a v -path-faithful slice of S ′.
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Conclusion;

Weiser’s algorithm does not always produce

minimal path-faithful slices.
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Linear and Function-linear Schemas

Definition A schema is

I linear if it has no repeated function or

predicate symbols;
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Linear and Function-linear Schemas

Definition A schema is

I linear if it has no repeated function or

predicate symbols;

I function-linear if it has no repeated

function symbols.
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Free and Liberal Schemas

Definition A schema S is

I free if every path through S is executable

for some interpretation of its symbols and

some initial state;

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Free and Liberal Schemas

Definition A schema S is

I free if every path through S is executable

for some interpretation of its symbols and

some initial state;

I liberal if for every executable path ρ

through S , there is an interpretation of its

symbols and an initial state such that the

same expression is not generated more

than once along ρ.

Mike Laurence Weiser’s Algorithm Computes Minimal Path-Faithful Slices of Function-linear, Free Program Schemas



Freeness ; liberality

The schema

while p(w) {

w := f (w);

v := g();

}

is free and linear but not liberal.
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Liberality ; freeness

The schema

while p(w)skip

is liberal and linear but not free.
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Slicing free, liberal, function-linear Schemas

Theorem[M R Laurence, JLAP 2005]

Let S be a free, liberal, function-linear

schema and let v be a variable.

Then the slice W(S , v) of S is the minimal

v -slice of S .
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Slicing free function-linear Schemas

Theorem[M R Laurence, PLID 2008]

Let S , be a free, function-linear schema and

let v be a variable.

Then the slice W(S , v) of S is the minimal

path-faithful v -slice of S .
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