
A Survey of Static Software Watermarking

James Hamilton and Sebastian Danicic
Department of Computing, Goldsmiths, University of London

United Kingdom
james.hamilton@gold.ac.uk, s.danicic@gold.ac.uk

Abstract

Software watermarks, which can be used to identify the
intellectual property owner of a piece software, are broadly
divided into two categories: static and dynamic. Static wa-
termarks are embedded in the code and/or data of a com-
puter program, whereas dynamic watermarking techniques
store a watermark in a program’s execution state. In this
paper, we present a survey of the known static software
watermarking techniques, including a brief explanation of
each.

1 Introduction
The global revenue loss due to software piracy was es-

timated to be more than $50 billion in 2009 [8]. Software
companies regularly use legal methods such as copyright
laws, patents and license agreements and ethical arguments
such as fair compensation for producers. However, these
methods do not always dissuade people from stealing soft-
ware, especially in emerging markets where the price of
software is high and incomes are low [27].

Software watermarking involves embedding a unique
identifier within a piece of software, to discourage software
piracy. Watermarking does not prevent copying but instead
discourages software thieves by providing a means to iden-
tify the owner of a piece of software and/or the origin of the
stolen software [54]. The hidden watermark can be recog-
nised or extracted, at a later date, by the use of a recogniser
or extractor to prove ownership of stolen software [86]. It is
also possible to embed a unique customer identifier in each
copy of the software distributed which allows the software
company to identify the individual that pirated the software
[58].

Watermarking techniques are used extensively in the en-
tertainment industry to identify multimedia files such as au-
dio and video files, and the concept has extended into the
software industry. Software watermarking is one technique
available for the protection of software [59].

Watermarks can be classified as either static or dynamic:

static watermarks are embedded in the code and/or data of
a computer program, whereas dynamic watermarking tech-
niques store a watermark in a program’s execution state
[15]. Figure 1 shows a conceptual diagram of a simple static
watermarking system.

Figure 1. A simple static watermarking system

In this paper, we present a survey of different types of
static software watermarking techniques, including a brief
explanation of each of the known algorithms.

2 Code Replacement
Some of the first patented software watermarking algo-

rithms [43, 69] were based around the idea of code replace-
ment; that is, they replaced a pre-determined portion of
code and/or data in a program with the watermark value.
These early techniques were susceptible to attacks, such
as collusion attacks – where the attacker compares two or
more copies of a watermarked program to identify the lo-
cation of the watermark. Monden et al. [51, 52, 53] de-
scribe a technique, MON , for watermarking Java programs
by swapping bytecode instructions within dummy methods
(implemented as jmark [50]). The dummy methods used
by MON are created either manually or automatically, and
method calls are protected by opaque predicates [16] to
ensure they are not executed. The basic idea is to assign
bit values to certain Java bytecode instructions and replace
the existing instructions with the encoding bits which cor-
respond to the watermark value. As the dummy method
is not executed there is no semantic restrictions on the re-

placements but the watermarked method must be seman-
tically correct, in order to pass the Java bytecode verifier
[78]. Myles et al. [57] implemented a version, MONSM ,
in Sandmark [12] and evaluated compared it to the David-
son/Myhrvold watermarking scheme [29]. MONSM dif-
fers from the jmark implementation as it automatically gen-
erates a dummy method, so is completely automatic. How-
ever, it is difficult to generate code which is similar to the
original program and it may be discoverable by a statistical
analysis of the bytecode.

Fukushima and Sakurai [33], Fukushima et al. [34] com-
bine the MON watermarking technique with obfuscation
to provide protection against collusion attacks. The idea
is to obfuscate each copy of a program differently, so that
comparison of programs will show several differences – not
just the watermark location.

Pervez et al. [61] describe a MON -like system which
acts on Java source, instead of bytecode and Thaker [75]
introduces a similar scheme which embeds watermarks by
swapping semantically-equivalent x86 assembly instruc-
tions. Another tool, Hydan [31, 32, 30] similarly uses the
replacement of semantically-equivalent instructions for the
purpose of steganographically embedding secret informa-
tion in x86 binary programs. Anckaert et al. [4, 5] further
discuss Hydan’s technique for steganography, comparing it
to other techniques for hiding information in computer pro-
grams.

Stern et al. [74] introduce robust object watermarking
ROW , based on a spread-spectrum technique previously
used for multimedia watermarking [26]. This technique dif-
fers from many other techniques because it views the code
as a whole statistical object, rather than a sequence of in-
structions. The technique is more resilient against collusion
attacks because the watermark is spread out over the pro-
gram, rather than being in one location.

The approach modifies the frequencies of groups of in-
structions in order to watermark the code (though other sta-
tistical properties of the program could be used). Stern
et al. [74] implemented their technique for x86 assembly
language and later Hachez [38], and separately Collberg and
Sahoo [14], implemented the technique for Java bytecode.
Curran et al. [28] describe a spread-spectrum technique us-
ing a vector derived from the call graph depth of a program;
Ai et al. [3] attempt to improve on the original algorithm by
introducing a collusion-attack resistant variation.

Finding the perfect transformation is difficult and none
of the existing implementations are perfect as many of the
transformations are easily undoable by trivial obfuscations
[13].

3 Code Re-Ordering
Davidson and Myhrvold [29] proposed one of the first

software watermarking algorithms DM which encodes the

watermark by basic block re-ordering. Myles et al. [57] pro-
posed a method of watermark extraction for this technique
and implemented the DM algorithm in Sandmark [12].

The basic idea is to convert the watermark into a number
w; then the wth permutation of a set of basic blocks B is
generated. The permutated basic blocks B′ are re-linked to
retain the original program semantics and B is replaced by
B′ to produce the watermarked program P ′. To extract a
watermark, the ordering of the original basic blocks is com-
pared against the new ordering, to obtain the permutation
number; this number is then converted back into the water-
mark number.

Hattanda and Ichikawa [41] evaluated the DM water-
marking algorithm by watermarking several C programs
and analysing metrics such as program size and program
performance. In their implementation they found that the
size increase of a watermarked program was between 9%
and 24% while the performance was 86% to 102% of the
original program. Anckaert et al. [4] implemented and eval-
uated a version of the DM watermarking algorithm for ma-
chine code where groups of chains of basic blocks are re-
ordered. They concluded that their watermarking algorithm
is stealthier as it has a minimal affect on code locality.

Shirali-Shahreza and Shirali-Shahreza [71] proposed a
software watermark scheme based the re-ordering of op-
erations in mathematical equations. The idea involves re-
ordering symmetric mathematical operations, such as ad-
dition, to preserve program semantics. Sha et al. [70]
proposed a very similar technique based on re-ordering
operand coefficients.

Gong et al. [37] proposed a watermarking scheme for
Java based on the ordering of a class file’s constant pool.
The constant pool, of a Java classfile, is an array of variable
length elements containing every constant used in the Java
class [78]. This scheme involves re-ordering constants cor-
responding to the wth permutation of the constants where
w is an integer watermark.

4 Register Allocation Based Watermarking
The QP algorithm [64] is a constraint-based watermark-

ing (and fingerprinting [66]) algorithm based on the concept
of graph colouring. In the QP algorithm edges are added
to a graph based on the value of the watermark. The graph
used for watermarking programs is the interference graph,
which is used to model the relationship between the vari-
ables in a program method. Each vertex in the graph repre-
sents a variable and an edge between two variables indicates
that their live ranges overlap. We colour the graph in order
to minimise the number of registers required and ensure that
two live variables do not share a register. Zhu and Thom-
borson [84] described a clarified version of the originally
published algorithm.

A major flaw in the QP algorithm is that it is not ex-

tractable as it is possible to insert two different messages
into an interference graph and obtain the same watermark
graph [84, 83, 85]. It has also been shown that the QP
graph solution can be modified in such a way that any mes-
sage could be extracted [46]. Qu and Potkonjak dismiss this
problem, claiming that it will be hard to build a meaningful
message particularily if the original message is encrypted
by a one-way function [65].

Myles and Collberg [55] implemented a new algorithm,
QPS, in Sandmark [12]. In the QPS algorithm triples of
vertices are selected such that they are isolated units that
will not effect other vertices in the graph. Experimental re-
sults [55] showed that the QPS algorithm has a very low
data-rate and is susceptible to a variety of simple attacks,
such as obfuscations. However, the QPS algorithm was
found to be quite stealthy and is extremely credible. In
other words, the watermarks are hard to detect by an at-
tacker whilst readily detectable by the watermark author.

Zhu and Thomborson [83] proposed a further improve-
ment which they call the QPI algorithm. The QPI ex-
traction algorithm requires the original interference graph
and the watermarked graph in order to extract the water-
mark message. The coloring of candidate vertices from the
original graph and the watermarked graph are compared, to
extract the watermark.

The Colour Change (CC) and Colour Permutation (CP)
algorithms [47, 48] are further improvements on the QPS
algorithm where the colouring function is modified to em-
bed a message, rather than modifying the interference
graph. The CP algorithm converts the watermark bit string
into a natural number w, and then chooses the wth permuta-
tion of the lexicographically ordered colours to replace the
original colour. The data-rate of the CC and CP algorithms
is higher than that of QPS and QPI because each vertex in
the interference graph can store 1 watermark bit. Li and Liu
[49] proposed a more efficient algorithm based on the CC
algorithm which they call Selected Colour Change (SCC).
The efficiency increase is obtained by only changing the
colours of either the 1 or the 0 bits, but not both.

Jiang et al. [44] propose a technique based on a com-
bination of RSA public-key encryption [68] and the QPI
algorithm [83]. Simply, they suggest that the watermark bit
string is encrypted before being embedded. If an adversery
extracts the encrypted watermark they will not be able to
decipher it, if the encryption is strong enough.

5 Graph Watermarking
Graph watermarking algorithms rely on the fact that

graph-generating code is difficult to analyse due to aliasing
effects [35] which, in general, is known to be un-decidable
[67]. Collberg et al. [19] describe several techniques for en-
coding watermark integers in graph structures. The graph
encodings can be divided into 3 types of encoding: enumer-

ation, radix and permutation.
Enumeration encoding encodes the watermark number

w as the wth enumerated graph, of a specific graph fam-
ily. These families include: directed Parent-Pointer Trees,
which contain a single edge between a vertex and it’s par-
ent, and Planted Planar Cubic Trees which are binary trees
where every interior vertex, except the root, has two chil-
dren.

A parent-pointer tree data-structure is space efficient be-
cause each node has just one pointer field referencing it’s
parent. However, the data-structure is fragile and an ad-
versary could add a single node or edge to distort the wa-
termark. PPCTs can be made more resilient to attacks by
a) marking each leaf with a self-pointer, and b) creating an
outer cycle from the root to itself through all the leaves [13].

Radix graphs add an extra pointer field in each vertex of
a circular linked list of length k to encode a base-k digit. It
is possible to encode watermark digits where a self-pointer
represents 0, a pointer to the next node 1, and so on.

Several papers [9, 62, 81, 79, 45, 82] describe a
technique which combines radix graphs with the error-
correcting properties of PPCTs by converting a radix graph
into a PPCT-like structure.

Permutation based graphs (as defined by Collberg et al.
[19]) use the same basic singly linked circular list structure
as the radix graphs but have error-correcting properties. In
this encoding scheme a permutation P = {p1, p2, . . . , pn}
is derived from the watermark integer; the permutation is
then encoded in the graph by adding edges between vertices
i and pi.

Reducible permutation graphs (RPG) [77, 76] are very
similar to permutation graphs but they closely resemble
control-flow graphs as they are reducible-flow graphs [42].
RPGs, like CFGs, contain a unique entry node and a unique
exit node, a preamble which contains zero or more nodes
from which all other nodes can be reached and a body which
encodes a watermarking using a self-inverting permutation
[10]. This family of graphs is resistant to edge-flip attacks,
where an attacker inverts the condition of conditional jumps
in a program.

Venkatesan et al. [77] proposed the first static graph
watermarking scheme, Graph Theoretic Watermarking
(GTW), which encodes a value in the topology of a pro-
gram’s control-flow graph [2]. The idea was later patented
by Venkatesan and Vazirani [76] for Microsoft. The basic
concept is to encode a watermark value in a reducible per-
mutation graph and convert it into a control flow graph; it is
then merged with the program control flow graph by adding
control flow edges between the two.

The algorithm adds bogus control flow edges between
random pairs of vertices in the program CFG and watermark
CFG in order to protect against static analysis attacks look-
ing for sparse-cuts [7] in the control-flow graph. A sparse-

cut would indicate a possible joining point of the original
program CFG and the watermark CFG where the attacker
could split the program with as few edges broken as possi-
ble.

Collberg et al. [11] implemented a version GTWSM

of GTW in Sandmark [12]. They measured the size and
time overhead of watermarking and evaluated the algorithm
against a variety of attacks. They also introduce two meth-
ods (Partial Sum splitting and Generalised Chinese Remain-
der Theorem splitting) for splitting a watermark integer into
redundant pieces so that a large integer can be stored in sev-
eral smaller CFGs. They found that stealth is a big problem;
for example, the basic blocks of the generated watermark
method consisted of 20% arithmetic instructions compared
to just 1% for standard Java methods [21]. Watermarks
of up to 150 bits increased program size by between 40%
and 75%, while performance decreased by between 0% and
36% [11].

6 Opaque Predicates
An opaque predicate is a predicate whose outcome is

known a priori. It is difficult for automated software anal-
ysis to find the value of the predicate; therefore it is not
known whether the enclosed code (which may or may not
be a watermark) could be removed [16].

Arboit [6] proposed a watermarking method where
pieces of a watermark are encoded as constants within
opaque predicates. The watermark is extracted by searching
a program for the watermark opaque predicates and decod-
ing them back into the watermark value.

Myles and Collberg [56] implemented the algorithm in
Sandmark [12] and found that the algorithm could, fairly
easily, be defeated by semantics-preserving transformation
attacks.

7 Abstract Interpretation
Abstract interpretation [24] is a static analysis technique

used for, among other things, the verification of software.
The technique is used to prove that the abstract seman-
tics of a program satisfies an abstract specification [23], ig-
noring irrelevant details about the concrete semantics and
specifications. Abstract interpretation can answer questions
which do not need full knowledge of program executions or
which tolerate an imprecise answer, such as partial correct-
ness proofs of programs [24].

The basic idea is to hide the watermark in such as way
that it can only be extracted by an abstract interpretation of
the concrete semantics of the code [25]. A constant prop-
agation static analysis [2] is used to extract a watermark
embedded using the abstract interpretation. During normal
execution of a program the variable takes on several values,
however, during an abstract interpretation of the program
the variable reveals the watermark value.

An advantage of this technique is that the code is actually
executed and therefore there is no need to use opaque predi-
cates, to prevent dead-code removal [2]. However, the code
generated is not entirely stealthy, as the watermark variable
can take on uncommon values during execution [13]. Gi-
acobazzi [36] discusses abstract interpretation based tech-
niques for designing new code obfuscation and watermark-
ing techniques.

Preda et al. [63] built a prototype tool which is able to
detect the opaquely true predicates ∀x ∈ Z : 2|(x2 + x)
and ∀x ∈ Z : 2|(x + x) by executing the code in the n-
arity abstract domain. In this domain the variables take on
the ‘value’ odd or even. Abstract operations are performed
on the abstract values, such as addition where, for example,
odd +a odd = even.

8 Watermarking Systems
There are 4 widely available watermarking systems for

Java bytecode: Sandmark [12], Allatori [72], DashO [1]
and jmark [50]. SandMark [12] is a tool developed by Coll-
berg et al. [20] at the University of Arizona for research
into software watermarking, tamper-proofing, and obfusca-
tion of Java bytecode. Sandmark, which was last updated in
2004, includes 12 static software watermarking algorithms
[18] – many of which are implementations of algorithms
discussed in this paper (including jmark’s algorithm). Al-
latori [72] is a commercial Java obfuscator which also in-
cludes a watermarking system. DashO [1] is a commercial
Java security solution, including obfuscator, watermarker
and encrypter. The static watermarking algorithms in all of
these systems are susceptible to semantics-preserving trans-
formation (distortive) attacks [40].

UWStego [17] is a tool for developing watermarking
algorithms that was never generally released, unless re-
quested, and is no longer under development. Additionally,
JavaWiz [60], a software watermarking system, is no longer
available.

Hydan [30], a system for steganographically embedding
hidden messages in x86 assembly code, is available but is
not aimed at watermarking and is therefore not resilient
against attacks.

9 Conclusion
We have presented a survey of static software water-

marking schemes from the basic, early patents [43, 69] to
the latest register allocation based techniques [49]. Previ-
ous studies (e.g. [41, 11, 14, 11]) have shown that static
techniques are highly susceptible to semantics preserving
transformation attacks and are therefore easily removed by
an adversary.

Software watermarking can be supplemented with other
forms of protection [73], such as obfuscations or tamper-
proofing techniques [22], in order to better protect a pro-

gram from copyright infringement and decompilation [39].
Further research should focus on dynamic software wa-

termarking algorithms [80] as static watermarking schemes
are not robust enough for intellectual property protection.

References
[1] DashO, 2010. URL http://www.preemptive.

com/products/dasho/overview. Accessed: 2
April, 2010.

[2] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jef-
frey D Ullman. Compilers: Principles, Techniques,
and Tools. Addison Wesley, 2nd edition, August 2006.
ISBN 0321486811.

[3] Jieqing Ai, Xingming Sun, Yunhao Liu, Ingemar J.
Cox, Guang Sun, and Yi Luo. A stern-based
Collusion-Secure software watermarking algorithm
and its implementation. In Proceedings of the 2007 In-
ternational Conference on Multimedia and Ubiquitous
Engineering, pages 813–818. IEEE Computer Society,
2007. ISBN 0-7695-2777-9.

[4] Bertrand Anckaert, Bjorn De Sutter, and Koen De
Bosschere. Covert communication through executa-
bles. In Program Acceleration through Application
and Architecture Driven Code Transformations: Sym-
posium Proceedings, pages 83–85, 2004.

[5] Bertrand Anckaert, Bjorn De Sutter, and Koen De
Bosschere. Steganography for executables. Infor-
mation Security and Cryptology - ICISC 2004, pages
425–439, 2005.

[6] Genevieve Arboit. A method for watermarking java
programs via opaque predicates. In The Fifth Interna-
tional Conference on Electronic Commerce Research
(ICECR-5), 2002.

[7] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Ex-
pander flows, geometric embeddings and graph parti-
tioning. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 222–231,
Chicago, IL, USA, 2004. ACM. ISBN 1-58113-852-
0.

[8] Business Software Alliance. Piracy impact study
2010: The economic benefits of reducing software
piracy, 2010.

[9] XiaoJiang Chen, DingYi Fang, JingBo Shen, Feng
Chen, WenBo Wang, and Lu He. A dynamic graph
watermark scheme of tamper resistance. In Proceed-
ings of the 2009 Fifth International Conference on In-
formation Assurance and Security - Volume 01, pages
3–6. IEEE Computer Society, 2009. ISBN 978-0-
7695-3744-3.

[10] Maria Chroni and Stavros D. Nikolopoulos. Encod-
ing watermark integers as self-inverting permutations.

In Proceedings of the 11th International Conference
on Computer Systems and Technologies and Workshop
for PhD Students in Computing on International Con-
ference on Computer Systems and Technologies, pages
125–130, Sofia, Bulgaria, 2010. ACM. ISBN 978-1-
4503-0243-2.

[11] C. Collberg, A. Huntwork, E. Carter, and
G. Townsend. Graph theoretic software water-
marks: Implementation, analysis, and attacks. In
Workshop on Information Hiding, 2004.

[12] Christian Collberg. Sandmark, August 2004. URL
http://www.cs.arizona.edu/sandmark/.
Accessed: 2 April, 2010.

[13] Christian Collberg and Jasvir Nagra. Surrepti-
tious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-
Wesley Professional, 2009. ISBN 0321549252,
9780321549259.

[14] Christian Collberg and Tapas Ranjan Sahoo. Software
watermarking in the frequency domain: implementa-
tion, analysis, and attacks. J. Comput. Secur., 13(5):
721–755, 2005.

[15] Christian Collberg and Clark Thomborson. On the
limits of software watermarking. Technical Report
164, August 1998.

[16] Christian Collberg, Clark Thomborson, and Douglas
Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In Principles of Programming Lan-
guages 1998, POPL’98, January 1998.

[17] Christian Collberg, S. Jha, D. Thomko, and H. Wang.
UWStego, 2001. URL http://pages.cs.
wisc.edu/˜hbwang/watermark/. Accessed:
14 July, 2010.

[18] Christian Collberg, Miriam Miklofsky, Ginger Myles,
Ashok Purushotham, RathnaPrabhu Rajendran, An-
drew Huntwork, Xiangyu Zhang, Danny Mandel,
Anna Segurson, Martin Stepp, Kelly Heffner, J Na-
gra, G Townsend, Balamurugan Chirtsabesan, and
Tapas Ranjan Sahoo. Sandmark algorithms. Sand-
mark documentation, University of Arizona, July
2002.

[19] Christian Collberg, Stephen Kobourov, Edward
Carter, and Clark Thomborson. Error-Correcting
graphs for software watermarking. In Proceedings of
the 29th Workshop on Graph Theoretic Concepts in
Computer Science, pages 156–167, 2003.

[20] Christian Collberg, Ginger Myles, and Andrew Hunt-
work. Sandmark – A tool for software protection re-
search. IEEE Security and Privacy, 1(04):4049, 2003.
ISSN 1540-7993.

[21] Christian Collberg, Andrew Huntwork, Edward

http://www.preemptive.com/products/dasho/overview
http://www.preemptive.com/products/dasho/overview
http://www.cs.arizona.edu/sandmark/
http://pages.cs.wisc.edu/~hbwang/watermark/
http://pages.cs.wisc.edu/~hbwang/watermark/

Carter, Gregg Townsend, and Michael Stepp. More
on graph theoretic software watermarks: Implementa-
tion, analysis, and attacks. Inf. Softw. Technol., 51(1):
56–67, 2009.

[22] Christian S. Collberg and Clark Thomborson. Water-
marking, Tamper-Proofing, and obfuscation - tools for
software protection. In IEEE Transactions on Soft-
ware Engineering, volume 28, page 735746, August
2002.

[23] P Cousot. Abstract interpretation. Online: http://
www.di.ens.fr/˜cousot/AI/, August 2008.
Accessed: 15 September, 2010.

[24] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Con-
ference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, page 238252, Los Angeles, California,
1977. ACM Press, New York, NY.

[25] Patrick Cousot and Radhia Cousot. An abstract
interpretation-based framework for software water-
marking. In Proceedings of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming
languages, pages 173–185, Venice, Italy, 2004. ACM.
ISBN 1-58113-729-X.

[26] Ingemar J. Cox, Joe Kilian, Frank Thomson Leighton,
and Talal Shamoon. A secure, robust watermark
for multimedia. In Proceedings of the First Interna-
tional Workshop on Information Hiding, pages 185–
206. Springer-Verlag, 1996. ISBN 3-540-61996-8.

[27] Gareth Cronin. A taxonomy of methods for soft-
ware piracy prevention. Technical report, Department
of Computer Science, University of Auckland, New
Zealand, 2002.

[28] D. Curran, N.J. Hurley, and M. O. Cinneide. Securing
java through software watermarking. In Proceedings
of the 2nd international conference on Principles and
practice of programming in Java, page 311324, 2003.

[29] Robert Davidson and Nathan Myhrvold. Method and
system for generating and auditing a signature for a
computer program, June 1996. Microsoft Corporation,
US Patent 5559884.

[30] Rakan El-Khalil. Hydan. http://www.
crazyboy.com/hydan/, 2004. Accessed: 11
September, 2010.

[31] Rakan El-khalil and Angelos D. Keromytis. Hydan:
Hiding information in program binaries. In in Inter-
national Conf. on Information and Communications
Security, ICICS. Springer-Verlag, 2004.

[32] Rakan El-Khalil and Angelos D. Keromytis. Hy-
dan: Information hiding in program binaries. In In-

ternational Conference on Informaton and Communi-
cations Security, 2004.

[33] Kazuhide Fukushima and Kouichi Sakurai. A soft-
ware fingerprinting scheme for java using classfiles
obfuscation, 2004.

[34] Kazuhide Fukushima, Toshihiro Tabata, Toshiaka
Tanaka, and Kouichi Sakurai. A software fingerprint-
ing scheme for java using class structure transforma-
tion. Transactions of Information Processing Soci-
ety of Japan, 46(8):2042–2052, August 2005. ISSN
03875806.

[35] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a
DAG, or a cyclic graph? a shape analysis for heap-
directed pointers in c. In Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 1–15, St. Petersburg
Beach, Florida, United States, 1996. ACM. ISBN 0-
89791-769-3.

[36] Roberto Giacobazzi. Hiding information in complete-
ness holes: New perspectives in code obfuscation
and watermarking. In Proceedings of the 2008 Sixth
IEEE International Conference on Software Engineer-
ing and Formal Methods, pages 7–18. IEEE Computer
Society, 2008. ISBN 978-0-7695-3437-4.

[37] Daofu Gong, Fenlin Liu, Bin Lu, Ping Wang, and
Lan Ding. Hiding information in java class file. In
Proceedings of the 2008 International Symposium on
Computer Science and Computational Technology -
Volume 02, pages 160–164. IEEE Computer Society,
2008. ISBN 978-0-7695-3498-5.

[38] Gael Hachez. A Comparative Study of Software Pro-
tection Tools Suited for E-Commerce with Contribu-
tions to Software Watermarking and Smart Cards.
PhD thesis, Universite Catholique de Louvain, March
2003.

[39] James Hamilton and Sebastian Danicic. An evaluation
of current java bytecode decompilers. In Ninth IEEE
International Workshop on Source Code Analysis and
Manipulation, volume 0, pages 129–136, Edmonton,
Alberta, Canada, 2009. IEEE Computer Society.

[40] James Hamilton and Sebastian Danicic. An evaluation
of static java bytecode watermarking. In Lecture Notes
in Engineering and Computer Science: Proceedings
of The World Congress on Engineering and Computer
Science 2010, volume 1, pages 1 – 8, San Francisco,
USA, October 2010. ISBN 978-988-17012-0-6. Win-
ner of the Best Student Paper Award.

[41] Kazuhiro Hattanda and Shuichi Ichikawa. The eval-
uation of davidsons digital signature scheme. IEICE
Trans. Fundamentals, E87A(1), January 2004.

[42] Matthew S. Hecht and Jeffrey D. Ullman. Flow graph

http://www.di.ens.fr/~cousot/AI/
http://www.di.ens.fr/~cousot/AI/
http://www.crazyboy.com/hydan/
http://www.crazyboy.com/hydan/

reducibility. In Proceedings of the fourth annual ACM
symposium on Theory of computing, pages 238–250,
Denver, Colorado, United States, 1972. ACM.

[43] Keith Holmes. Computer software protection, Febru-
ary 1994. International Business Machines Corpora-
tion, US Patent: 5287407.

[44] Zetao Jiang, Rubing Zhong, and Bina Zheng. A soft-
ware watermarking method based on Public-Key cryp-
tography and graph coloring. In Genetic and Evo-
lutionary Computing, 2009. WGEC ’09. 3rd Interna-
tional Conference on, pages 433–437, 2009.

[45] Zhu Jianqi, Liu YanHeng, and Yin KeXin. A novel dy-
namic graph software watermark scheme. In Proceed-
ings of the 2009 First International Workshop on Edu-
cation Technology and Computer Science - Volume 03,
pages 775–780. IEEE Computer Society, 2009. ISBN
978-0-7695-3557-9.

[46] Tri Van Le and Yvo Desmedt. Cryptanalysis of UCLA
watermarking schemes for intellectual property pro-
tection. In Revised Papers from the 5th Interna-
tional Workshop on Information Hiding, pages 213–
225. Springer-Verlag, 2003. ISBN 3-540-00421-1.

[47] Hakun Lee and Keiichi Kaneko. New approaches
for software watermarking by register allocation. In
Proceedings of the 2008 Ninth ACIS International
Conference on Software Engineering, Artificial Intel-
ligence, Networking, and Parallel/Distributed Com-
puting, pages 63–68. IEEE Computer Society, 2008.
ISBN 978-0-7695-3263-9.

[48] Hakun Lee and Keiichi Kaneko. Two new algorithms
for software watermarking by register allocation and
their empirical evaluation. In Proceedings of the
2009 Sixth International Conference on Information
Technology: New Generations, pages 217–222. IEEE
Computer Society, 2009. ISBN 978-0-7695-3596-8.

[49] Jun Li and Quan Liu. Design of a software water-
marking algorithm based on register allocation. In
e-Business and Information System Security (EBISS),
2010 2nd International Conference on, pages 1–4,
2010.

[50] Akito Monden. jmark, 2003. URL http://se.
aist-nara.ac.jp/jmark/. Accessed: 14 July,
2010.

[51] Akito Monden, Hajimu Iida, et al. A watermarking
method for computer programs. In Proceedings of
the 1998 Symposium on Cryptography and Informa-
tion Security, SCIS’98. Institute of Electronics, Infor-
mation and Communication Engineers, January 1998.
in Japanese.

[52] Akito Monden, Hajimu Iida, Ken ichi Matsumoto,
Katsuro Inoue, and Koiji Torii. Watermarking java

programs. In International Symposium on Future Soft-
ware Technology ’99, pages 119–124, October 1999.

[53] Akito Monden, Hajimu Iida, Ken ichi Matsumoto,
Koji Torii, and Katsuro Inoue. A practical method
for watermarking java programs. In COMPSAC ’00:
24th International Computer Software and Applica-
tions Conference, pages 191–197, Washington, DC,
USA, 2000. IEEE Computer Society. ISBN 0-7695-
0792-1.

[54] Ginger Myles. Using software watermark-
ing to discourage piracy. Crossroads -
The ACM Student Magazine, 2004. URL
http://www.acm.org/crossroads/
xrds10-3/watermarking.html. Accessed:
21 March, 2009.

[55] Ginger Myles and Christian Collberg. Software wa-
termarking through register allocation: Implementa-
tion, analysis, and attacks. In International Confer-
ence on Information Security and Cryptology, vol-
ume 2971/2004 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2003. ISBN 978-3-540-
21376-5.

[56] Ginger Myles and Christian Collberg. Software water-
marking via opaque predicates: Implementation, anal-
ysis, and attacks. In ICECR-7, 2004.

[57] Ginger Myles, Christian Collberg, Zachary Heide-
priem, and Armand Navabi. The evaluation of two
software watermarking algorithms. Softw. Pract. Ex-
per., 35(10):923938, 2005. ISSN 0038-0644.

[58] Jasvir Nagra, Clark Thomborson, and Christian Coll-
berg. A functional taxonomy for software watermark-
ing. In Michael J. Oudshoorn, editor, Aust. Comput.
Sci. Commun., pages 177–186, Melbourne, Australia,
2002. ACS.

[59] Gleb Naumovich and Nasir Memon. Preventing
piracy, reverse engineering, and tampering. Computer,
36(7):6471, 2003. ISSN 0018-9162.

[60] Jens Palsberg and Di Ma. Javawiz, 2000. URL http:
//www.cs.purdue.edu/homes/madi/wm/.
No longer available.

[61] Z. Pervez, Noor-ul-Qayyum, Y. Mahmood, and H.F.
Ahmad. Semblance based disseminated software wa-
termarking algorithm. In Computer and Information
Sciences, 2008. ISCIS ’08. 23rd International Sympo-
sium on, pages 1–4, 2008.

[62] Zhou Ping, Chen Xi, and Yang Xu-Guang. The soft-
ware watermarking for tamper resistant radix dynamic
graph coding. Inform. Technol. J., 9:1236–1240, June
2010.

[63] Mila Dalla Preda, Matias Madou, Koen De Bosschere,
and Roberto Giacobazzi. Opaque predicates detection

http://se.aist-nara.ac.jp/jmark/
http://se.aist-nara.ac.jp/jmark/
http://www.acm.org/crossroads/xrds10-3/watermarking.html
http://www.acm.org/crossroads/xrds10-3/watermarking.html
http://www.cs.purdue.edu/homes/madi/wm/
http://www.cs.purdue.edu/homes/madi/wm/

by abstract interpretation. In Michael Johnson and
Varmo Vene, editors, AMAST, volume 4019 of Lecture
Notes in Computer Science, pages 81–95. Springer,
2006. ISBN 3-540-35633-9.

[64] Gang Qu and Miodrag Potkonjak. Analysis of wa-
termarking techniques for graph coloring problem.
In Proceedings of the 1998 IEEE/ACM international
conference on Computer-aided design, pages 190–
193, San Jose, California, United States, 1998. ACM.
ISBN 1-58113-008-2.

[65] Gang Qu and Miodrag Potkonjak. Hiding signatures
in graph coloring solutions. In Information Hiding,
pages 348–367, 1999.

[66] Gang Qu and Miodrag Potkonjak. Fingerprinting in-
tellectual property using constraint-addition. In De-
sign Automation Conference, pages 587–592, 2000.

[67] G. Ramalingam. The undecidability of aliasing. ACM
Trans. Program. Lang. Syst., 16(5):1467–1471, 1994.

[68] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key cryp-
tosystems. Communications of the ACM, 21(2):120–
126, 1978. ISSN 0001-0782.

[69] Peter R. Samson. Apparatus and method for seri-
alizing and validating copies of computer software,
February 1994.

[70] Zonglu Sha, Hua Jiang, and Aicheng Xuan. Software
watermarking algorithm by coefficients of equation.
Genetic and Evolutionary Computing, International
Conference on, 0:410–413, 2009.

[71] M. Shirali-Shahreza and S. Shirali-Shahreza. Soft-
ware watermarking by equation reordering. In Infor-
mation and Communication Technologies: From The-
ory to Applications, 2008. ICTTA 2008. 3rd Interna-
tional Conference on, pages 1–4, 2008.

[72] Smardec. Allatori java obfuscator, September 2009.
URL http://www.allatori.com/. Accessed:
2 April, 2010.

[73] Jose Sogiros. Is protection software needed wa-
termarking versus software security. http://bb-
articles.com/watermarking-versus-software-security,
March 2010. URL http://bb-articles.com/
watermarking-versus-software-security.
Accessed: 13 April, 2010.

[74] Julien Stern, Gael Hachez, Francois Koeune, and
Jean-Jacques Quisquater. Robust object watermark-
ing: Application to code. In Information Hiding Work-
shop ’99, pages 368–378, 1999.

[75] Smita Thaker. Software Watermarking via Assembly
Code Transformations. Masters thesis, San Jose State
University, 2004.

[76] Ramarathnam Venkatesan and Vijay Vazirani. Tech-
nique for producing through watermarking highly
tamper-resistant executable code and resulting water-
marked code so formed, May 2006. Microsoft Corpo-
ration, US Patent: 7051208.

[77] Ramarathnam Venkatesan, Vijay Vazirani, and
Saurabh Sinha. A graph theoretic approach to
software watermarking. In Proceedings of the 4th
International Workshop on Information Hiding, 2001.

[78] Bill Venners. Inside the Java Virtual Machine.
McGraw-Hill, Inc., New York, NY, USA, 1996. ISBN
0079132480.

[79] Wang Yong and Yang Yixian. A software water-
mark database scheme based on PPCT. In CIHW2004,
2004.

[80] S. Jamal H. Zaidi and Hongxia Wang. On the analysis
of dynamic software watermarking. Technical report,
2009.

[81] J. Zhu, Y. Liu, and K. Yin. A novel planar IPPCT
tree structure and characteristics analysis. Journal of
Software, 5(3):344, 2010.

[82] Jianqi Zhu, Kexin Yin, and Yanheng Liu. A novel
DGW scheme based on 2D PPCT and permutation.
Multimedia Information Networking and Security, In-
ternational Conference on, 2:109–113, 2009.

[83] William Zhu and Clark Thomborson. Algorithms
to watermark software through register allocation.
In Digital Rights Management. Technologies, Issues,
Challenges and Systems, volume 3919 of Lecture
notes in computer science, pages 180–191, Berlin,
Allemange, 2006. Springer. ISBN 978-3-540-35998-
2.

[84] William Zhu and Clark Thomborson. Extrac-
tion in software watermarking. In Sviatoslav
Voloshynovskiy, Jana Dittmann, and Jessica J.
Fridrich, editors, MM&Sec, pages 175–181. ACM,
2006. ISBN 1-59593-493-6.

[85] William Zhu and Clark Thomborson. Recognition in
software watermarking. In Proceedings of the 4th
ACM international workshop on Contents protection
and security, pages 29–36, Santa Barbara, California,
USA, 2006. ACM. ISBN 1-59593-499-5.

[86] William Feng Zhu. Concepts and Techniques in Soft-
ware Watermarking and Obfuscation. PhD thesis, The
University of Auckland, 2007.

http://www.allatori.com/
http://bb-articles.com/watermarking-versus-software-security
http://bb-articles.com/watermarking-versus-software-security

	Introduction
	Code Replacement
	Code Re-Ordering
	Register Allocation Based Watermarking
	Graph Watermarking
	Opaque Predicates
	Abstract Interpretation
	Watermarking Systems
	Conclusion

