
The Journal of Logic and Algebraic Programming 80 (2011) 481–496

Contents lists available at SciVerse ScienceDirect

The Journal of Logic and Algebraic Programming

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j l a p

Characterizing minimal semantics-preserving slices of predicate-linear,

free, liberal program schemas

Sebastian Danicic b, Robert M. Hierons c, Michael R. Laurence a,∗
a
Department of Computer Science, Regent Court, 211 Portobello, Sheffield S1 4DP, UK

b
Department of Computing, Goldsmiths College, University of London, London SE14 6NW, UK

c
Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH, UK

A R T I C L E I N F O A B S T R A C T

Article history:

Received 10 September 2010

Revised 14 April 2011

Accepted 15 April 2011

Available online 21 April 2011

Keywords:

Program schemas

Herbrand domain

Program slicing

Weiser’s algorithm

Free and liberal schemas

Linear schemas

A program schema defines a class of programs, all of which have identical statement struc-

ture, but whose functions and predicatesmay differ. A schema thus defines an entire class of

programs according to how its symbols are interpreted. A subschema of a schema is obtained

from a schema by deleting some of its statements. We prove that given a schema S which

is predicate-linear, free and liberal, such that the true and false parts of every if predicate

satisfy a simple additional condition, and a slicing criterion defined by the final value of

a given variable after execution of any program defined by S, the minimal subschema of S

which respects this slicing criterion contains all the function and predicate symbols ‘needed’

by the variable according to the data dependence and control dependence relations used in

program slicing, which is the symbol set given byWeiser’s static slicing algorithm. Thus this

algorithm gives predicate-minimal slices for classes of programs represented by schemas

satisfying our set of conditions. We also give an example to show that the corresponding

resultwith respect to the slicing criterion defined by termination behaviour is incorrect. This

complements a result by the authors in which S was required to be function-linear, instead

of predicate-linear.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

A schema represents the statement structure of a program by replacing real functions and predicates by symbols repre-

senting them. A schema, S, thus defines a whole class of programs which all have the same structure. Each program can be

obtained from S via a domain D and an interpretation i which defines a function f i : Dn → D for each function symbol f

of arity n, and a predicate function pi : Dm → {T, F} for each predicate symbol p of arity m. As an example, Fig. 1 gives a

schema S, and the program P of Fig. 2 is defined from S by interpreting the function symbols f , g, h and the predicate symbol

p as given by P, with D being the set of integers.

The subject of schema theory is connectedwith that of program transformation andwas originallymotivated by thewish

to compile programs effectively [6]. Schema theory is also relevant to program slicing. Since program slicing algorithms

do not normally take into account the meanings of the functions and predicates of a program, a schema encodes all the

information about any program which it defines that is available to such algorithms.

A subschema of a schema S is defined to be any schema obtained by deleting statements from S. Given a schema S and

a variable v, we wish to find a subschema T of S which satisfies the following condition; given any interpretation and any

initial state such that the program defined by S terminates, that defined by T also does, and defines the same final value for

∗ Corresponding author. Tel.: +44 (0) 114 222 1800; fax: +44 (0) 114 222 1810.

E-mail address: mike.rupen@googlemail.com (M.R. Laurence).

1567-8326/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.jlap.2011.04.009

http://dx.doi.org/10.1016/j.jlap.2011.04.009
http://www.sciencedirect.com/science/journal/15678326
www.elsevier.com/locate/jlap
http://dx.doi.org/10.1016/j.jlap.2011.04.009


482 S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496

Fig. 1. Schema S.

Fig. 2. Program P.

v. In this case we say that T is a v-slice of S. We are particularly interested in finding minimal v-slices of S (with slices of S

ordered according to their sets of symbols 1 ).

The main theorem of this paper requires that given any path through a schema S, there is an interpretation and an initial

state such that the program thus defined follows this path when executed (the freeness condition) and the same term is not

generated more than once as it does so (the liberality condition). These conditions were first defined by Paterson [13]. We

also require that the same predicate symbol does not occur more than once in S (the predicate-linearity condition), and that

if the same function symbol occurs in both the true and false parts of any if predicate, 2 then it assigns to distinct variables

in each case. We call schemas satisfying all these conditions special schemas.We prove that given a schema Swhich satisfies

these conditions and a variable v, the v-slice of S given byWeiser’s static slicing algorithm [17] has the uniqueminimal set of

predicate and function symbols of all v-slices of S. Given a schema, Weiser’s algorithm computes the subschema containing

only those symbols defined by the transitive closure of the control and backward data dependence relations. We also define

an ω-slice of a schema in which termination behaviour defines the slicing criterion, and give an example to show that

Weiser’s algorithm, modified in a natural way with respect to this slicing criterion, need not give a minimal ω-slice. This is

in contrast to the situation for function-linear, free, liberal schemas [9].

Our theorem is a strengthening of the result in [4] inwhich no symbolwas allowed to occurmore than once in the schema

S (that is, S had to be linear, as opposed to just predicate-linear in this paper).

1.1. Organisation of the paper

In the remainder of this section, we explain how the field of program slicing provides motivation for our results, and

we also discuss the history of the study of schemas. In Section 2, we give formally our basic schema definitions. In Section

3 we define formally free and liberal schemas, and also give a simple characterisation of schemas that are both free and

liberal, which shows that Weiser’s algorithm preserves the property of being both free and liberal for slices. In Section 4

we formally define a subschema of a schema. In Section 5 we formally define the data dependence relations�
S

and
final�
S

for

a schema S and define Weiser’s labelled symbol set for a schema. We also give examples of cases in which the subschema

of a schema containing only the symbols in Weiser’s set is not the minimal subschema satisfying the required conditions.

In Section 6, we define the notion of a p-couple for a predicate p; that is, a pair of interpretations which differ only on one

p-predicate term. In Section 7 we introduce formally the class of special schemas to which our results apply. In Section 8,

we prove our main theorems. In Section 9, we give an example to show that the subschema of a special schema given by

Weiser’s algorithm with respect to termination need not be minimal of all subschemas preserving termination behaviour.

In Section 10, we discuss our conclusions.

1.2. Relevance of schema theory to program slicing

The field of (static) program slicing is largely concerned with the design of algorithms which given a program and a

variable v, eliminate as much code as possible from the program, such that the subprogram consisting of the remaining

code, when executed from the same initial state, will still give the same final value for v as the original program, and

preserve termination. One algorithm is thus better than another if it constructs a smaller slice.

Most program slicing algorithms are based on the program dependence graph (PDG) of a program. This includes Weiser’s

algorithm [17], which was, however, expressed in different language. (For a fuller discussion of program slicing algorithms

see [2,16].) The PDG of a program is a graph whose vertices are the labelled statements of the program and whose directed

edges indicate control or data dependence of one statement upon another.

Data dependence is defined as follows. We say that in a schema S, a function or predicate symbol x is data dependent

upon a function symbol f , written f�
S
x, if x references the variable to which f assigns, and there is a path through S passing

1 A symbol in this paper means a function or predicate symbol in a schema.
2 If the statement if p(v) then T1 else T2 occurs in a predicate-linear schema S, then we say that T1 and T2 are, respectively, the true and false parts of p in S.



S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496 483

Fig. 3. Deleting the if statement gives a v-slice of this schema.

Fig. 4. Deleting the assignment u := f (u); gives a v-slice of this linear schema, although u := f (u); lies in Weiser’s statement set with respect to v.

through f before passing through x without passing through an intermediate assignment to the same variable as f . The

relation statement f
final�
S

v is defined analogously for a function symbol f and variable v using terminal path-segments.

This definition of the relations�
S

,
final�
S

is purely syntactic; feasability of any path is not required for it to hold. Thus h�
S
f ,

f
final�
S

v and g
final�
S

v hold for the schema of Fig. 1; g
final�
S

v means that there is a path through S passing through g, and not

subsequently passing through a later assignment to the variable v before reaching the end of the schema.

Slicing algorithms do not take account of the meanings of the functions and predicates occurring in a program, nor do

they exploit the knowledge that the same function or predicate occurs in two different places in a program. This reflects the

fact that it is undecidable whether the deletion of a particular line of code from a program can affect the final value of a given

variable after execution [3]. On the other hand a schema likewise encapsulates the data and control dependence relations

of the programs that it represents, but whereas it also does not encode the meanings of its function and predicate symbols,

it does record any multiple occurrences of these symbols, and this extra information may sometimes lead to a proof of the

existence of smaller slices. As an example, it is obvious that the predicate symbol p and the assignment that it controls may

be deleted from the schema of Fig. 3 without preventing termination or changing the final value of v (that is, the resulting

subschema is a v-slice in our terminology), but most program slicing algorithmswill treat the two occurrences of g as if they

were two distinct functions, and therefore will not make any deletion.

However, slicing algorithms taking linear schemas as inputmay yieldmore information about a program than algorithms

that merely use Weiser’s algorithm. As an example, in the schema S of Fig. 4, which will be discussed in further sections, it

can be seen that the subschema of S obtained by deleting the assignment with symbol f is a v-slice of S, since the removal

of this assignment cannot prevent termination (which is determined solely by the value of w when referenced by q), nor

can it prevent the path of execution from passing through g1 at least once, though it may affect the number of times this

happens. However, if the assignment with symbol g1 is replaced by an assignment v := g2(v); to give a schema T , then the

assignment u := f (u); may not similarly be deleted from T , since this deletion may change the value of v after execution.

As an example of an interpretation under which this occurs, suppose that h1, h2, f and g2 are all interpreted as the function

v �→ v + 1 in the domain of integers and q(0), q(1), p(0), p(1) and p(2) map to true, whereas q(v) and p(v) map to false if

v ≥ 2 or v ≥ 3, respectively. Execution of S from the initial state in which all variables are set to zero results in a final value

of 1 for v, whereas if the assignment u := f (u); is deleted, then the execution path will pass through g2 on both occasions

that it enters the body of q giving a final value of 3 for v. However Weiser’s algorithm will treat these two cases identically,

and will require f to be in a v-slice in both cases. This is because for S and T , Weiser’s set with respect to the variable vmust

contain g1 or g2, respectively, since g1
final�
S

v and g2
final�
T

v, and p controls g1 or g2, respectively, hence Weiser’s set must

contain p, and f �
S

h2 �
S

p (and similarly for T), thus Weiser’s set contains f . Danicic [3] gives other examples of cases of

linear schemas for which program slicing algorithms will not give minimal correct subschemas. If the linearity assumption

is discarded, then non-minimality can be demonstrated even for loop-free schemas, such as the one in Fig. 3, in which p

and both occurrences of g lie in the Weiser symbol set defined by v, but the statement containing p can clearly be deleted

without changing the final value of v. These examples motivate the mathematical study of schemas, which may lead to the

computation of smaller subschemas than conventional program slicing techniques can achieve.

1.3. Different classes of schemas

Many subclasses of schemas have been defined:



484 S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496

Structured schemas, in which goto statements are forbidden, and thus loops must be constructed using while statements.

All schemas considered in this paper are structured.

Linear schemas, in which each function and predicate symbol occurs at most once.

Predicate-linear schemas, which we introduce in this paper, in which each predicate symbol occurs at most once, but

which may have more than one occurrence of the same function symbol.

Free schemas, where all paths are executable under some interpretation.

Liberal schemas, in which two assignments along any legal path can always be made to assign distinct values to their

respective variables.

Near-liberal schemas, which the authors introduced in [5], in which this non-repeating condition applies only to terms not

having the form g() for a function symbol g of zero arity.

We now give examples of schemas satisfying these definitions, and first show that the freeness and liberality conditions

on schemas are incomparable. To see this, consider the following two examples of linear schemas. The schema

while p(v) do skip

contains no assignments and is therefore liberal, but it is not free, since there is no choice of interpretation and initial state

under which the executed path thus defined passes exactly once through the body of p, since the value of v, and hence the

boolean value defined at p cannot change during execution. On the other hand the schema

while q(w) do {
w := f (w);
x := g();
}

is free, since if f defines the function w �→ w + 1 over the domain of integers, then w never defines a repeated value when

referenced by q, and so q can be interpreted so as to define an executed path that passes any desired number of times through

q, but it is not liberal, since the variable x is always assigned the same value at occurrences of g along any executed path. The

subschema obtained from it by deleting the assignment x := g(); (that is, while q(w) dow := f (w);) is both free and liberal,

on the other hand.

The schema in Fig. 4 can also be seen to be free, owing to the self-referencing assignments with symbols f , h1, h2, which

can be interpreted as the functionw �→ w+ 1 over the domain of integers, thus ensuring that the variables u,w referenced

by p and q, respectively, never repeat in value. It is not liberal however, since it has a path passingmore than once through g1,

along which this assignment defines the same value to v on each occasion. More generally, it is easy to see that no schema

having a constant assignment in the body of a while predicate can be both free and liberal, since if it is free, then there is an

executable path passing twice through this assignment, which clearly assigns the same value to its variable on each occasion.

Two schemas are said to be equivalent if they have the same termination behaviour, and give the samefinal value for every

variable, given every symbol interpretation and initial state. The authors have shown [10,11] that it is decidable whether

linear, free, liberal schemas are equivalent.

Paterson [13] gave a proof that it is decidable whether a schema is both liberal and free (which we give in Section 3); and

since he also gave an algorithm transforming a schema S into a schema T such that T is both liberal and free if and only if S is

liberal, it is clearly decidable whether a schema is liberal. It is an open problemwhether freeness is decidable for the class of

linear schemas. However he also proved, using a reduction from the Post Correspondence Problem, that it is not decidable

whether an arbitrary schema is free.

1.4. Previous results on the decidability of schema equivalence

Most previous research on schemas has focused on schema equivalence, as defined in Section 1.3. All results on the

decidability of equivalence of schemas are either negative or confined to very restrictive classes of schemas. In particular

Paterson [13] proved that equivalence is undecidable for the class of all (unstructured) schemas. He proved this by showing

that the halting problem for Turing machines (which is, of course, undecidable) is reducible to the equivalence problem for

the class of all schemas. Ashcroft and Manna showed [1] that an arbitrary schema can be effectively transformed into an

equivalent structured schema, provided that statements such as while¬p(u) do T are permitted; hence Paterson’s result

shows that any class of schemas for which equivalence can be decided must not contain this class of schemas. Thus in order

to get positive results on this problem, it is plainly necessary to define the relevant classes of schema with great care.

Positive results on the decidability of equivalence of schemas include the following; in an early result in schema theory,

Ianov [8] introduced a restrictive class of schemas, the Ianov schemas, for which equivalence is decidable. This problemwas

later shown to be NP-complete [7,14].

Paterson [13] proved that equivalence is decidable for a class of schemas called progressive schemas, in which every

assignment references the variable assigned by the previous assignment along every legal path.



S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496 485

Sabelfeld [15] proved that equivalence is decidable for another class of schemas called through schemas. A through schema

satisfies two conditions: firstly, that on every path froman accessible predicate p to a predicate qwhichdoes not pass through

another predicate, and every variable x referenced by p, there is a variable referenced by qwhich defines a term containing

the term defined by x, and secondly, distinct variables referenced by a predicate can be made to define distinct terms under

some interpretation.

In view of the evident difficulty of obtaining positive results on this problem, and the importance of program slicing, it

seems sensible to concentrate on trying to decide equivalence for classes of schemapairs inwhichone schema is a subschema

of the other, as was done for a class of near-liberal schemas in [5].

2. Basic definitions for schemas

Throughout this paper, F , P , V and L denote fixed infinite sets of function symbols, predicate symbols, variables and labels,

respectively. We assume a function

arity : F ∪ P → N.

The arity of a symbol x is the number of arguments referenced by x. Note that in the case when the arity of a function symbol

g is zero, g may be thought of as a constant.

The set Term(F, V) of terms is defined as follows:

• each variable is a term,
• if f ∈ F is of arity n and t1, . . . , tn are terms then f (t1, . . . , tn) is a term.

We refer to a tuple t = (t1, . . . , tn), where each ti is a term, as a vector term. We call p(t) a predicate term if p ∈ P and

the number of components of the vector term t is arity(p).
We also define F-terms and vF-terms recursively for F ∈ F∗ and v ∈ V . Any term f (t1, . . . , tn) is an f -term, and the

term v is a v-term. If g ∈ F and at least one of the terms t1, . . . , tn is an F-term or vF-term, then the term g(t1, . . . , tn) is
an Fg-term, or vFg-term, respectively. Thus any FF ′-term is also an F ′-term.

Definition 1 (schemas). We define the set of all schemas recursively as follows. skip is a schema. An assignment y := f (l)(x);
where y ∈ V , f ∈ F , l ∈ L and x is a vector of arity(f ) variables, is a schema. From these all schemas may be ‘built up’ from

the following constructs on schemas.

sequences; S′ = U1U2 . . .Ur is a schema provided that each Ui for i ∈ {1, . . . , r} is a schema.

if schemas; S′′ = if p(l)(x) then {T1} else {T2} is a schema whenever p ∈ P , l ∈ L, x is a vector of arity(p) variables, and

T1, T2 are schemas. We call the schemas T1 and T2 the true and false parts of p(l).

while schemas; S′′′ = while q(l)(y) do {T} is a schema whenever q ∈ P , l ∈ L, y is a vector of arity(q) variables, and T is a

schema. We call T the body of the while predicate q(l) in S′′′. If x is a labelled symbol in T , and there is no labelled while

predicate p(m) in T which also contains x in its body, then we say that q(l) lies immediately above x.

Thus a schema is a word in a language over an infinite alphabet. We normally omit the braces { and } if this causes no

ambiguity. Also, we may write if p(l)(x) then {T1} instead of if p(l)(x) then {T1} else {T2} if T2 = skip.

If no symbol (that is, no element ofF∪P) appearsmore than once in a schema S, then S is said to be linear. If no element of

P appears more than once in a schema S, then S is said to be predicate-linear. We define function-linear schemas analogously

using the set F .

The labels on function and predicate symbols do not affect the semantics of a schema; they are merely included in order

to distinguish different occurrences of the same symbol in a schema; we always assume that distinct occurrences of a symbol

in a schema have distinct labels. We will often omit labels on symbols in contexts where they need not be referred to, as in

Fig. 3, or where a symbol only occurs once in a schema. In particular, our main theorems assume predicate-linear schemas,

hence we do not label predicate symbols in Section 8.

We define Symbols(S) = Funcs(S) ∪ Preds(S), Funcs(S) and Preds(S) to be the sets of symbols, function symbols and

predicate symbols occurring in a schema S. Their labelled counterparts are SymbolsL(S), FuncsL(S) and PredsL(S). Also
ifPredsL(S) andwhilePredsL(S) are the sets of all labelled if predicates andwhile predicates in S. A schemawithout predicates

(that is, a schema which consists of a sequence of assignments and skips) is called predicate-free.

If a schema S contains an assignment y := f (l)(x); then we define y = assignS(f
(l)) and x = refvecS(f

(l)). If p(l) ∈
PredsL(S) then refvecS(p

(l)) is defined similarly.

Definition 2 (the ↘S relation). Let S be a schema. If p(l) is a labelled predicate in S and x is any (possibly labelled) symbol,

we say that p(l) ↘S x holds if x lies in the body of p(l) (if p(l) is a while predicate in S) or x lies in the true or false part of



486 S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496

p(l) (if p(l) is an if predicate). We may strengthen this by writing p(l) ↘S x (Z) for Z ∈ {T, F} to indicate the additional

condition that x lies in the Z-part of p(l) if p(l) ∈ ifPredsL(S), or p(l) ∈ whilePredsL(S) (if Z = T).

The relation ↘S is the transitive closure of the relation ‘controls’ in program analysis terminology.

2.1. Paths through a schema

The execution of a program defines a possibly infinite sequence of assignments and predicates. Each such sequence will

correspond to a path through the associated schema. The set �ω(S) of paths through S is now given.

Definition 3 (the set �ω(S) of paths through S, path-segments of S). If L is any set, then we write L∗ for the set of finite words

over L and Lω for the set containing both finite and infinite words over L. If σ is a word, or a set of words over an alphabet,

then pre(σ ) is the set of all finite prefixes of (elements of) σ .

For each schema S the alphabet of S, written alphabet(S) is the set

{y := f (l)(x)| y := f (l)(x); is an assignment in S}⋃
{p(l), Z | p(l) ∈ PredsL(S) ∧ Z ∈ {T, F}}.

We define symbol(y := f (l)(x)) = f and symbol(p(l), Z) = p.

The words in �(S) ⊆ (alphabet(S))∗ are formed by concatenation from the words of subschemas of S as follows:

For skip,

�(skip)

is the set containing only the empty word.

For assignments,

�(y := f (l)(x); ) = {y := f (l)(x)}.
For sequences, �(S1S2 . . . Sr) = �(S1) . . . �(Sr).

For if schemas, �( if p(l)(x) then {T1} else {T2}) is the set of all concatenations of p(l), T with a word in �(T1) and all

concatenations of p(l), F with a word in �(T2).

For while schemas, �(while q(l)(y) do {T}) = (q(l), T �(T))∗q(l), F.

We define �ω(S) = {σ ∈ (alphabet(S))ω|pre(σ ) ⊆ pre(�(S))}. Elements of �ω(S) are called paths through S. Any

μ ∈ alphabet(S)∗ is a path-segment (in S) if there are words μ′, μ′′ such that μ′μμ′′ ∈ �(S). A terminal path-segment of S

is a path-segment ν such that μν ∈ �(S) for some μ.

2.2. Semantics of schemas

The symbols upon which schemas are built are given meaning by defining the notions of a state and of an interpretation.

It will be assumed that ‘values’ are given in a single set D, which will be called the domain. We are mainly interested in

the case in which D = Term(F, V) (the Herbrand domain) and the function symbols represent the ‘natural’ functions with

respect to Term(F, V).

Definition 4 (states, (Herbrand) interpretations and the natural state e). Given a domain D, a state is either ⊥ (denoting

non-termination) or a function V → D. The set of all such states will be denoted by State(V,D). An interpretation i defines,

for each function symbol f ∈ F of arity n, a function f i : Dn → D, and for each predicate symbol p ∈ P of aritym, a function

pi : Dm → {T, F}. The set of all interpretations with domain D will be denoted Int(F,P,D).
We call the set Term(F, V) of terms the Herbrand domain, and we say that a function from V to Term(F, V) is a Herbrand

state. An interpretation i for the Herbrand domain is said to be Herbrand if the functions f i : Term(F, V)n → Term(F, V)
for each f ∈ F are defined as

f i(t1, . . . , tn) = f (t1, . . . , tn)

for all n-tuples of terms (t1, . . . , tn).
We define the natural state e : V → Term(F, V) by e(v) = v for all v ∈ V.



S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496 487

Note that an interpretation i being Herbrand places no restriction on the mappings

pi : (Term(F, V))m → {T, F} defined by i for each p ∈ P .

Given a schema S and a domain D, an initial state d ∈ State(V,D) with d 
= ⊥ and an interpretation i ∈ Int(F,P,D) we

now define the final state M[[S]]id ∈ State(V,D) and the associated path πS(i, d) ∈ �ω(S). In order to do this, we need to

define the predicate-free schema associated with the prefix of a path by considering the sequence of assignments and skips

through which it passes.

Definition 5 (the schema schema(σ )). Given a word σ ∈ (alphabet(S))∗ for a schema S, we recursively define the

predicate-free schema schema(σ ) by the following rules; schema(λ) = skip if λ is the empty word, schema(σ v := f (x)) =
schema(σ ) v := f (x); and
schema(σp(l), X) = schema(σ ).

Lemma 6. Let S be a schema. If σ ∈ pre(�(S)), the set {m ∈ alphabet(S)| σm ∈ pre(�(S))} is one of the following; a singleton

containing an underlined assignment, a pair {p(l), T, p(l), F} where p(l) ∈ Preds(L)(S), or the empty set, and if σ ∈ �(S) then
the last case holds.

Lemma 6, which was proved in [9, Lemma 6], reflects the fact that at any point in the execution of a program, there is

never more than one ‘next step’ which may be taken, and an element of �(S) cannot be a strict prefix of another.

Definition 7 (semantics of predicate-free schemas). Given a state d 
= ⊥, the final stateM[[S]]id and associated pathπS(i, d) ∈
�ω(S) of a schema S are defined as follows:

For skip,

M[[skip]]id = d

and

πskip(i, d) is the empty word.

For assignments,

M[[y := f (l)(x);]]id(v) =
{
d(v) if v 
= y,

f i(d(x)) if v = y ,

(where the vector term d(x) = (d(x1), . . . , d(xn)) for x = (x1, . . . , xn))
and

πy := f (l)(x);(i, d) = y := f (l)(x),

and for sequences S1S2 of predicate-free schemas,

M[[S1S2]]id = M[[S2]]iM[[S1]]id
and

πS1S2(i, d) = πS1(i, d)πS2(i,M[[S1]]id).
This uniquely defines M[[S]]id and πS(i, d) if S is predicate-free.

In order to give the semantics of a general schema S, first the path, πS(i, d), of S with respect to interpretation, i, and

initial state d is defined.

Definition 8 (the path πS(i, d)). Given a schema S, an interpretation i, and a state, d 
= ⊥, the path πS(i, d) ∈ �ω(S) is

defined by the following condition; for all σ p(l), X ∈ pre(πS(i, d)), the equality pi(M[[schema(σ )]]id(refvecS(p(l)))) = X

holds.

In other words, the path πS(i, d) has the following property; if a predicate expression p(l)(refvecS(p
(l))) along πS(i, d) is

evaluated with respect to the predicate-free schema consisting of the sequence of assignments preceding that predicate in

πS(i, d), then the value of the resulting predicate term given by i ‘agrees’ with the value given in πS(i, d).
By Lemma 6, this defines the path πS(i, d) ∈ �ω(S) uniquely.



488 S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496

Definition 9 (the semantics of arbitrary schemas). If πS(i, d) is finite, we define

M[[S]]id = M[[schema(πS(i, d))]]id
(which is already defined, since schema(πS(i, d)) is predicate-free) otherwiseπS(i, d) is infinite andwe defineM[[S]]id = ⊥.

In this last case we may say that M[[S]]id is not terminating. Also, for schemas S, T and interpretations i and j we write

M[[S]]id(ω) = M[[T]]jd(ω) to mean M[[S]]id = ⊥ ⇐⇒ M[[T]]jd = ⊥. For convenience, if S is predicate-free and

d : V → Term(F, V) is a state then we define unambiguouslyM[[S]]d = M[[S]]id; that is, we assume that the interpretation

i is Herbrand if d is a Herbrand state; and we will write M[[μ]]d to meanM[[schema(μ)]]d for any μ ∈ alphabet(S)∗.

Observe thatM[[S1S2]]id = M[[S2]]iM[[S1]]id and

πS1S2(i, d) = πS1(i, d)πS2(i,M[[S1]]id)
hold for all schemas (not just predicate-free ones).

Given a schema S, let μ ∈ pre(�(S)). We say that μ passes through a predicate term p(t) if μ has a prefix μ′ ending in

p(l), Y for Y ∈ {T, F} such thatM[[μ′]]e(refvecS(p(l))) = t holds. We say that p(t) = Y is a consequence of μ in this case.

3. Free and liberal schemas

Given an initial state and an interpretation, a path through a schema defines a term f (t) or a predicate term p(t) at each
symbol that it encounters. For this paper, we wish to consider the class of schemas for which no term or predicate term is

defined more than once along any path, given e as the initial state and assuming that all interpretations are Herbrand.

Definition 10 (free and liberal schemas). Let S be a schema.

• If for every σ ∈ pre(�(S)) there is a Herbrand interpretation i such that σ ∈ pre(πS(i, e)), then S is said to be free.

• If for every Herbrand interpretation i and any prefix μ v := f (l)(a) ν w := g(m)(b) ∈ pre(πS(i, e)), we have

M[[μ v := f (l)(a)]]e(v) 
= M[[μ v := f (l)(a) ν w := g(m)(b)]]e(w),

then S is said to be liberal. (If f 
= g then of course this condition is trivially satisfied.)

Thus a schema S is said to be free if for every path through S, there is a Herbrand interpretation which follows it with

the natural state e as the initial state, and a schema S is said to be liberal if given any path through S passing through two

assignments and a Herbrand interpretation which follows it with e as the initial state, the assignments give distinct values

to the variables to which they assign. The definitions of freeness and liberality were first given in [13].

Observe that if a schema S is free, then given a Herbrand interpretation i,

μ p(l), X μ′ p(m), Y ∈ pre(πS(i, e))

implies that

M[[μ]]e(refvecS(p(l))) 
= M[[μμ′]]e(refvecS(p(m)))

holds, since otherwise there would be no Herbrand interpretation whose path (for initial state e) has the prefix μ p(l), X μ′
p(m), ¬X . Thus a path through a free schema cannot pass more than once (for initial state e) through the same predicate

term. Hence if a Herbrand interpretation i maps only finitely many predicate terms to T, and S is a free schema, then the

path πS(i, e) terminates. Similarly, if a schema S is free and predicate-linear, and a Herbrand interpretation j maps finitely

many while predicate terms in S to T, then the path πS(j, e) terminates.

Proposition 11 demonstrates the use of requiring our schemas to be liberal.

Proposition11. Let S, T1, T2 bepredicate-free schemasandassume that each schemaSTi is liberal. Let v1, v2 ∈ V . IfM[[ST1]]e(v1)= M[[ST2]]e(v2), then M[[T1]]e(v1) = M[[T2]]e(v2) holds.
Proof. Assume M[[ST1]]e(v1) = M[[ST2]]e(v2) holds. We will prove M[[T1]]e(v1) = M[[T2]]e(v2) by induction on the

number of assignments in T1. We may assume that each schema STi contains an assignment to vi, since if this holds for

exactly one value of i, then a contradiction is obtained, and if it is false for both values of i, then the conclusion follows



S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496 489

immediately. Write

M[[ST1]]e(v1) = M[[ST2]]e(v2) = f (t)

and let vi := fi(ui); be the last assignment to vi in STi for each i. Clearly f1 = f2 = f .

• Suppose that in the case of ST1, this last assignment to v1 occurs in S. Thus this assignment sets the variable v1 to f (t). Since
ST2 is liberal andM[[ST2]]e(v2) = f (t) holds, no assignment in T2 can set a variable to f (t) along ST2, hence v1 := f (u1);
is also the last assignment to v1 = v2 in ST2, and so M[[T1]]e(v1) = M[[T2]]e(v2) = v1 = v2 follows, thus proving the

desired result.
• Thus we may assume that the last assignment v1 := f (u1); to v1 in ST1 occurs in T1. Similarly, we may assume that the

last assignment v2 := f (u2); to v2 in ST2 occurs in T2. Let u1 and u2 be the first components of u1 and u2, respectively,

and write Ti = T ′
i vi := fi(ui); T ′′

i for each i. By the inductive hypothesis applied to S and each T ′
i , the termM[[T ′

i ]]e(ui) is
the same for each i; the Proposition then follows from the analogous result for the other components of each ui. �

Proposition 11 need not hold for non-liberal schemas; for example, if S and T1 are both v := g(); (so ST1 is not liberal),

T2 = skip and v1 = v2 = v.

As mentioned in the introduction, it was proved in [13] that it is not decidable whether an (unstructured) schema is free,

but it is decidable whether it is liberal, or liberal and free. Theorem 12 proves the latter result for structured schemas. It is

an open question as to whether freeness of a linear or function-linear schema is decidable.

Theorem 12 (it is decidable whether a schema is liberal and free). Let S be a schema. Then S is both liberal and free if and only

if for every path-segment x̃μỹ in S with x̃, ỹ ∈ alphabet(S), symbol(x̃) = symbol(ỹ) and such that the same labelled symbol

does not occur more than once in x̃μ or in μỹ, then either x̃ and ỹ reference a different vector of variables, or the path-segment

x̃μ contains an assignment to a variable referenced by ỹ.

In particular, it is decidable whether a schema is both liberal and free.

Proof. [13]. Assume that S is both liberal and free. Then for any path-segment x̃μỹ satisfying the conditions given, there is

a prefix � and a Herbrand interpretation i such that �x̃μỹ ∈ pre(πS(i, e)), and distinct (predicate) terms are defined when

x̃ and ỹ are reached, thus proving the necessity of the condition.

To prove sufficiency, first observe that the ‘non-repeating’ condition on the letters of the path-segment μ may be ignored,

since path-segments that begin and end with letters having the same labelled symbol can be removed from within x̃μ and

μỹ until it is satisfied. Consider the set of prefixes of �(S) of the form �x̃μỹ with symbol(x̃) = symbol(ỹ) such that x̃μỹ

satisfies the condition given. By induction on the length of such prefixes, it can be shown that every assignment encountered

along such a prefix defines a different term (for initial state e), and the result follows immediately from this.

Since there are finitely many path-segments in S satisfying the conditions given for x̃μỹ and these can be enumerated, the

decidability of liberality and freeness for the set of schemas follows easily. �

4. Subschemas and slicing conditions

Definition 13 (subschemas of a schema). The set of subschemas of a schema S is the minimal set of schemas which satisfies

the following rules:

• skip is a subschema of any schema.
• S1 and S2 are both subschemas of any schema S1S2.• If S′ is a subschema of S, then S′T and TS′ are subschemas of ST and TS, respectively.
• if T ′ is a subschema of T then while p(u) do T ′ is a subschema of while p(u) do T;
• if T ′ is a subschema of T then the if schema if q(u) then S else T ′ is a subschema of

if q(u) then S else T (the true and false parts may be interchanged in this example);
• a subschema of a subschema of S is itself a subschema of S.

Definition 14 (the semantic u-slice condition for u ∈ V ∪ {ω}). Let T be a subschema of a schema S. Then given u ∈ V , we say

that T is a u-slice of S if given any domain D, any state d : V → D and any i ∈ Int(F,P,D), M[[S]]id 
= ⊥ ⇒ (M[[T]]id 
=
⊥ ∧ M[[S]]id(u) = M[[T]]id(u)) holds. We also say that T is an ω-slice of S if given any domain D, any state d : V → D and

any i ∈ Int(F,P,D), M[[S]]id 
= ⊥ ⇐⇒ M[[T]]id 
= ⊥ holds.

Thus the u-slice condition is given in terms of every conceivable domain and initial state; however it is well known that

the Herbrand domain is the only one that needs to be considered when considering many schema problems. Theorem 15,

which is virtually a restatement of [12, Theorem 4–1], ensures that for slicing purposes, we only need to consider Herbrand

interpretations and the natural state e.



490 S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496

Theorem 15. Let χ be a set of schemas, let D be a domain, let d be a function from the set of variables into D and let i be an

interpretation using this domain. Then there is a Herbrand interpretation j such that the following hold.

(1) For all S ∈ χ , the path πS(j, e) = πS(i, d).
(2) If S1, S2 ∈ χ and v1, v2 are variables and ρk ∈ pre(πSk(j, e)) for k = 1, 2 and M[[ρ1]]e(v1) = M[[ρ2]]e(v2), then also

M[[ρ1]]id(v1) = M[[ρ2]]id(v2) holds.
Throughout the remainder of the paper, all interpretations will be assumed to be Herbrand.

5. The data dependence relations�
S

and
final�
S

and Weiser’s labelled symbol set

Definition 16 formalises the�
S

and
final�
S

relations introduced in Section 1.2.

Definition 16 (the�
S

and
final�
S

relations and parameterised path-segments). Let S be a schema and let σ be a path-segment in

S.

We call σ an F-path-segment, or vF-path-segment for F ∈ F∗ and v ∈ V if M[[σ ]]e(u) for some u ∈ V is an F-term, or

vF-term, respectively. We also call these path-segments an Fu-path-segment or vFu-path-segment, respectively.

We call σp(l), Z an Fp-path-segment or Fp(l)-path-segment in S ifM[[σ ]]e(u) is an F-term for some u ∈ V referenced by

p(l) in S. We define vFp(l)-path-segments analogously.

We sometimes strengthen these definitions by using labelled function symbols in the word F to indicate which labelled

assignment in S creates the appropriate subterm of M[[σ ]]e(u). We write f (l)�
S
g(m) if S contains an f (l)g(m)-path-segment

for f ∈ F and g ∈ F ∪ P , and write f (l)
final�
S

u if S contains a terminal path-segment σ such thatM[[σ ]]e(u) is an f -term.

The relations� and
final� correspond to the data dependence relation in program slicing. We now give examples of these

relations. If S is the schema of Fig. 4, the path-segment u := f (u) q(w), T w := h1(w) u := h2(u) in S is both an fh2-path-

segment andaufh2-path-segment, and the relation f�
S
h2 holds. Similarly, thepath-segmentq(w), T w := h1(w) u := h2(u)

p(u), T is a uh2p-path-segment and an h2p-path-segment, and h2�
S
p holds. Since v := g1() u := f (u) q(w), F is a terminal

path-segment in S, g1
final�
S

v holds.

Definition 17 (Weiser’s labelled symbol set). Let S be a schema and let u ∈ {ω} ∪ V . Then we define NS(u) ⊆ FuncsL(S) ∪
PredsL(S) to be the minimal set satisfying the following conditions:

(1) If f (l)
final�
S

u ∈ V , then f (l) ∈ NS(u) holds.

(2) If u = ω then whilePredsL(S) ⊆ NS(u).

(3) If x ∈ NS(u) and f (l)�
S
x, then f (l) ∈ NS(u) holds.

(4) If x ∈ NS(u) and p(l) ↘S x then p(l) ∈ NS(u).

The setNS(u) (traditionally only defined for the case in which u ∈ V , and for programs rather than schemas) is fundamental

to most slicing algorithms. It contains all symbols which might conceivably affect the final value of u (if u is a variable) or

termination (if u = ω). This assertion is formalised in Theorem 18.

Given a schema S and a set � ⊆ SymbolsL(S) satisfying (x ∈ � ∧ p(l) ↘S x) ⇒ p(l) ∈ �, there is a subschema

T of S such that SymbolsL(T) = �, obtained from S by deleting all elements of SymbolsL(S) − � from S. This subschema

is easily shown to be unique. In particular, for any u ∈ V ∪ {ω}, every schema S has a unique subschema T satisfying

SymbolsL(T) = NS(u). By Theorem 12, if S is both free and liberal, then so is T .

Theorem 18. Let S be any schema, let u ∈ V ∪ {ω} and let T be a subschema of S. If SymbolsL(T) = NS(u), then T is a u-slice

of S.

Proof. Proved in [9, Theorem 18]. �

If S is liberal, free, and function-linear, then a subschema T of S is the u-slice of S with the minimal number of labelled

symbols if and only if SymbolsL(T) = NS(u) holds, as was proved in [9]; but in general this is false. To see this, consider the



S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496 491

Fig. 5. h ∈ NS(u), but deleting the assignment w := h() gives a u-slice of S.

schema S in Fig. 5. It is clearly irrelevant whether p(w) maps to T or F, and hence the assignment w := h() may be deleted

to give a u-slice.

Even if a schema is both free and linear, Weiser’s algorithm need not give minimal slices. To see this, consider the linear

schema S of Fig. 4which can easily be seen to be free. Owing to the constant g1-assignment, S is not liberal; any path entering

the true part of pmore than once would assign the same value, g1(), to v each time. Since S contains the fh2p-path-segment

u := f (u) q, Tw := h1(w) u := h2(u) p, T, and p ↘S g1 and g1
final�
S

v hold, f ∈ NS(v) follows; but the subschema S′ of S

in which the assignment u := f (u); is deleted is a v-slice of S, since any interpretation j satisfyingM[[S′]]je(v) 
= M[[S]]je(v)
would have to define a pathπS(j, e) passing through the f -assignment (since otherwise the deletion of f from Swouldmake

no difference to M[[S]]je(v)), and so the value of v would be thus fixed at g1().

6. Couples of interpretations

In order to establish which predicate symbols of a schema must be included in a slice in order to preserve our desired

semantics, we define the notion of a p-couple for a predicate p.

Definition 19 (couples). Let i, j be interpretations and let p ∈ P .We say that the set {i, j} is a p-couple if there is a vector term
t such that i and j differ only at the predicate term p(t). In this casewemay also say that {i, j} is a p(t)-couple. If a component

of t is an F-term for F ∈ F∗, then {i, j} is an Fp-couple. Given any u ∈ V and schema S, we also say that {i, j} is an Fpu-couple

or p(t)u-couple for S if also M[[S]]ie(u) 
= M[[S]]je(u) and both sides terminate. Lastly, we may label p (an Fp(l)u-couple, or

p(l)(t)u-couple for S) to indicate that the paths πS(i, e) and πS(j, e) diverge at p(l) (at which point the predicate term p(t)
is defined).

We also make analogous definitions if instead u = ω; that is, if a set {i, j} is a p-couple for a predicate symbol p, then we

say {i, j} is a pω-couple for a schema S if exactly one path in {πS(i, e), πS(j, e)} terminates.

Note that a pu-couple is simply an Fpu-couple with F as the empty word. The existence of a pu-couple for a schema S

‘witnesses’ the fact that p affects the semantics of S, as defined by u. As an example of a p-couple, let i be an interpretation

that maps the predicate terms q(w), q(h1(w)) and p(h2(u)) to T, and maps q(h1(h1(w))) and p(h2(f (h2(u)))) to F and

let the interpretation j be identical except that it maps p(h2(f (h2(u)))) to T. Then {i, j} is a p-couple. If S is the schema in

Fig. 4, then both paths πS(i, e), πS(j, e) pass twice through the body of q, with πS(i, e) passing through g1 only on the first

occasion, whereas πS(j, e) passes twice through g1. Since both interpretations define the same final value for v, {i, j} is not a
pv-couple for S. However, if T is the schema obtained from S by replacing the assignment v := g1(); by v := g2(v), then {i, j}
is a pv-couple for T .

Proposition 20 follows immediately from Definition 19.

Proposition 20. If u ∈ V and T is a u-slice of a schema S, then a pu-couple for S is also a pu-couple for T.

Definition 21 (head and tails of a couple). Let S be a schema. Let u ∈ V , and let q ∈ Preds(S). Let I = {i, j} be a qu-couple for

S and write

πS(k, e) = μq(l), Zk ρk

for each k ∈ I and {Zi, Zj} = {T, F}; then we define tailS(I, k) = ρk for each k ∈ I, and μ = headS(I).

The motivation for Definition 21 is given by Lemma 22, which shows that given a pu-couple for a free liberal schema, a

new pu-couple may be obtained from it by replacing its head by any prefix leading to p, while keeping the same tails.

Lemma 22 (Changing the head of a couple). Let S be a free liberal schema and let p(l) ∈ PredsL(S) and u ∈ V . Suppose there is
a p(l)u-couple I for S and a prefix μ p(l), T in S, then there is a pu-couple I′ for S such that μ = headS(I

′) and {tailS(I, k)| k ∈
I} = {tailS(I′, k)| k ∈ I′}. In particular, if there is a p(l)u-couple I for S and S contains an Fp(l)-path-segment for F ∈ F∗, then
there exists an Fp(l)u-couple I′ for S.



492 S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496

Proof. Write I = {i, j}. Since S is free, there exist interpretations i′, j′ defining pathsμp(l), ZtailS(I, i) andμp(l), ¬ZtailS(I, j)

for Z ∈ {T, F}, and by Proposition 11, the final value of u after each path is still distinct. Thus it suffices to prove that i′, j′ need
not differ on any predicate term except the p-predicate term defined after μ. However, if this is false, then q(t′) = Y must

be a consequence of one of the paths and q(t′) = ¬Y must be a consequence of the other, for some predicate term q(t′) and
Y ∈ {T, F}. Again, since S is free, q(t′) must occur on the tails of both paths, and by Proposition 11 applied to the variables

referenced by the appropriate occurrences of q on each path and the prefixes of the paths preceding these occurrences, the

same incompatibility would contradict the existence of the p(l)u-couple I. Thus we may define I′ = {i′, j′}. �

For the remainder of this paper, we use the following terminology with interpretations. If i is an interpretation, p(t) is a
predicate term and X ∈ {T, F}, then i(p(t) = X) is the interpretation which maps every predicate term to the same value

as i except p(t), which it maps to X .

Lemma 22 need not hold for schemas that are not both free and liberal. To see this, consider the free, linear, non-liberal

schema S of Fig. 4.

Let the interpretation i satisfy qi(t) = T if and only if the term t = w, and pi(h2(u)) = T. If the interpretation j =
i(p(h2(u)) = F), then {i, j} is an h2pv-couple for S, since M[[S]]ie(v) = g1() whereas M[[S]]je(v) = v, but there is no

fh2pv-couple for S, although S contains an fh2p-path-segment, since any interpretation k such that πS(k, e) passes through
the f -assignment must satisfyM[[S]]ke(v) = g1().

7. Restriction to special schemas

In order to prove our main results, we need to exclude from consideration schemas such as the one in Fig. 5. Therefore

we will now only consider schemas such that if the same function symbol occurs in both parts of any if predicate, then the

occurrences assign to different variables. The utility of this assumption is demonstrated by Proposition 24.

Definition 23 (Special schemas). Let S be a predicate-linear free liberal schema. We say that S is special if given any p ∈
ifPreds(S) and f ∈ F such that p ↘S f (l) (T) and p ↘S f (m) (F) hold, assignS(f

(l)) 
= assignS(f
(m)) holds.

Fig. 6 in Section 9 gives an example of a special schema.

Proposition 24. Let v ∈ V and let R, S1, S2 be predicate-free schemas such that either S1 or S2 contains an assignment to v, each

schema RSj is liberal and for all f ∈ F , if S1 and S2 both contain assignments with function symbol f , then they assign to different

variables. Then M[[RS1]]e(v) 
= M[[RS2]]e(v) holds.

Fig. 6. Deleting the assignment x := c(); gives an ω-slice of this special schema, although c ∈ NS(ω).



S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496 493

Proof. If only one schema in the set {S1, S2} contains an assignment to v, then the result follows from the liberality condition.

If both do, let fj be the function symbol of the last assignment to v in each Sj . By our hypotheses, f1 
= f2, and each term

M[[RSj]]e(v) has fj as the outermost function symbol, giving the result. �

8. Main theorems

We wish to prove that for any u ∈ V , every schema which is a u-slice of a given special schema S contains every symbol

occurring in NS(u). Thus we need to refer to the recursive definition of NS(u). This motivates Lemmas 25, 28 and 29,

and Definition 26. We first consider Condition (4) in Definition 17, and show that the property of defining a pu-couple is

‘backward-preserved’ by the ↘S relation.

Lemma 25. Let S be a free predicate-linear schema and assume p ↘S q for p, q ∈ Preds(S). Let u ∈ V . Assume that there exists

a qu-couple for S. Then there exists a pu-couple for S.

Proof. Assume p ↘S q (X) holds and for each r ∈ Preds(S), choose Zr ∈ {T, F}, subject to the provisos that Zp = X and

r ∈ whilePreds(S) ⇒ Zr = T. Since X = T if p is a while predicate, this is possible.

Since there exists a qu-couple for S, a pair of interpretations (i, j) can be chosen such that {i, j} is a qu-couple for S and

the number of predicate terms r(s) that imaps to Zr is minimal for all such pairs; clearly this number is finite, since the path

πS(i, e) terminates. The pathπS(i, e)must pass through q and hence through p, X , since p ↘S q (X) holds, and hence there

is a predicate term p(t) which i maps to X . Since q 
= p, pj(t) = X also holds. Define the interpretations i′, j′ to be identical

to i and j, respectively, except that i′, j′ both map p(t) to ¬X . Thus i′ maps fewer predicate terms r(s) to Zr than i does, and

hence by the minimality assumption on i, {i′, j′} is not a qu-couple for S. Hence either

M[[S]]ie(u) 
= M[[S]]i′e (u) or M[[S]]je(u) 
= M[[S]]j′e (u)
holds.

By the freeness of S and the fact that i′ and j′ map finitely many predicate terms r(s) for r ∈ whilePreds(S) toT, the paths

πS(i
′, e) and πS(j

′, e) are both terminating, and so either {i, i′} or {j, j′} is a pu-couple for S, giving the result. �

It is convenient to make the following definitions, which merely give an alternative way of expressing Weiser’s set.

Definition 26 ((p, X)-links and v-feeding path-segments). Let S be a predicate-linear schema.

Let p ∈ ifPreds(S) and X ∈ {T, F}. A (p, X)-link in S is a path-segment p, Xν for some path ν in the X-part of p in S.

If p ∈ whilePreds(S), then the path-segment p, F is called a (p, F)-link in S; and a path-segment in (p, T�(bodyS(p)))
∗p, F

which passes at least once through �(bodyS(p)) is a (p, T)-link.
Let p, q ∈ Preds(S) and let v ∈ V . We say that a path-segment μ in S v-feeds p to q if there exists X ∈ {T, F} such that

νμq, T is a path-segment in S for some (p, X)-link ν and M[[μ]]e(w) is a vF-term for some F ∈ F∗ and q references the

variable w.

Proposition 27. Let S1, S2, T be predicate-free schemas and let v,w be variables such that M[[S1]]e(v) 
= M[[S2]]e(v) and

assume that M[[T]]e(w) is a vG-term for some G ∈ F∗. Then M[[S1T]]e(w) 
= M[[S2T]]e(w) holds.

Proof. This follows by induction on the total number of assignments and occurrences of skip in T . If T = skip then

v = vG = w and the result is straightforward. If T = T ′skip or T = T ′ w′ := g(u); for w′ 
= w, then M[[SiT]]e(w) =
M[[SiT ′]]e(w) for each i and so the result follows from the inductive hypothesis applied to T ′. Thus we may assume that

T = T ′ w := g(w1, . . . ,wm);. Hence we may write G = G′g such that for some j ≤ m, M[[T ′]]e(wj) is a vG′-term. From the

inductive hypothesis applied to T ′, M[[S1T ′]]e(wj) 
= M[[S2T ′]]e(wj) holds. Since M[[SiT]]e(w) = g(M[[SiT ′]]e(w1), . . . ,

M[[SiT ′]]e(wm)) for each i, the result follows. �

Wecannowprove that theproperty of defining apu-couple is ‘backward-preserved’ by the transitive closure of Conditions

(3) and (4) of Definition 17.

Lemma 28. Let S be a special schema. Let u, v ∈ V and p, q ∈ Preds(S). Assume that there exists a qu-couple for S. Suppose that

there exists an assignment to v in the body or in one part of p in S and that there exists a path-segment in S v-feeding p to q. Then

there exists a pu-couple for S.

Proof. Given a fixed pair (p, u), we will assume that the conclusion of the Lemma is false, but that the hypotheses are true

for some triple (q, v, σ ), where σ is a path-segment in S v-feeding p to q, andwill show that this leads to a contradiction.We

will assume that the triple (q, v, σ ) is chosen such that the path-segment σ is of minimal length such that the hypotheses

of the Lemma are satisfied.



494 S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496

For some X ∈ {T, F}, let ρ be a (p, X)-link passing through an assignment to v and let μρσ ∈ pre(�(S)). By Lemma

22, we can choose a qu-couple I = {i, j} for S such that headS(I) = μρσ . We may assume that i and j map finitely many

while predicate terms to T, since the interpretations define terminating paths. Let m be the total number of r-predicate

terms which i and j both map to T, where r is the while predicate lying immediately above q if q ∈ ifPreds(S), or q itself

if q ∈ whilePreds(S). If q ∈ ifPreds(S) and q does not lie in the body of a while predicate, then m and r are undefined. We

assume that I is chosen such that if defined, m is minimal for the chosen values of q, v and σ .

Letρ′ be any (p, ¬X)-link and let� be the set of all pairs (q̃(t̃), Z) such that q̃(t̃) = Z is a consequence of the prefixμρ′σ ,

but is not a consequence of μρσ , and let the interpretations i′, j′ be obtained by altering i and j, respectively, in accordance

with the pairs in �; thus, if (q̃(t̃), Z) ∈ � then q̃i
′
(t̃) = Z , otherwise q̃i

′
(t̃) = q̃i(t̃), and similarly for j′. Thus the paths

πS(i
′, e) and πS(j

′, e) both have μρ′σ as a prefix. By the freeness of S, the set � does not contain any subset of the form

{(q̃(t̃), Z), (q̃(t̃), ¬Z)} and so i′ and j′ are well-defined. Wewrite I′ = {i′, j′}. We now show that a contradiction is obtained.

The proof proceeds in stages:

(1) For any (q̃(t̃), Z) ∈ �, we now show that there is no q̃u-couple for S. Assume this is false for some (q̃(t̃), Z). By the

definition of �, q̃(t̃) does not occur on μ, and by Lemma 25 and the fact that p 
= q̃ by the falsity of the conclusion of

the Lemma, q̃(t̃) does not occur onμρ′ either, and soμρ′σ has a prefixμρ′σ ′q̃, Z such that q̃ defines q̃(t̃) afterμρ′σ ′
and since q̃(t̃) = Z is not a consequence of μρσ , replacing ρ by ρ′ in μρσ ′ changes the q̃-predicate term defined

after μρσ ′. Hence for some variable v′ in the body or in one part of p, σ ′ v′-feeds p to q̃, contradicting the minimality

of σ .

(2) Wenowshowthat I′ is aqu-couple for S. Suppose this is false. Since I is aqu-couple for S, eitherM[[S]]ie(u) 
= M[[S]]i′e (u)
or the analogous assertion holds for j and j′. However, since S is free, changing i or j at finitely many predicate terms

still results in an interpretation defining a terminating path through S, and by (1), does not change the final value

of u if the predicate terms have the form q̃(t̂) for some (q̃(t̃), Z) ∈ �, thus contradicting the definitions of i′ and j′
immediately.

(3) Hence I′ is a qu-couple for S. Let t = M[[μρσ ]]e(refvecS(q)); thus i and j differ only at q(t). Clearly i′ and j′ also differ

only at q(t) and so their paths diverge at q(t). Since S is free, q(t) = Z is not a consequence of μρσ for either Z , and

so by (1) and the definition of �, q(t) does not occur on μρ′σ either. Also, M[[μρσ ]]e(w) 
= M[[μρ′σ ]]e(w) holds

for at least one variable w referenced by q, by the assumptions on ρ and σ and Proposition 24 applied to schema(μ),
schema(ρ) and schema(ρ′), and Proposition 27 applied to schema(μρ), schema(μρ′) and schema(σ ), and so q does

not define q(t) afterμρ′σ . ThusπS(i
′, e) andπS(j

′, e) pass at least twice through q afterμρ′σ , andm and r are defined

and headS(I
′) = μρ′στ for some path-segment τ passing at least once through r, T.

(4) Thus by Lemma 22, there exists a qu-couple Ĩ = {ĩ, j̃} for S which has the same pair of tails as I′ and such that

headS(Ĩ) = μρ′σ . We may assume that each r-predicate term which is not a consequence of either path πS(ĩ, e) or

πS(j̃, e) is mapped toF by both interpretations in Ĩ. We now show that this ‘cutting out’ of the path-segment τ passing

through r, T from headS(I
′) contradicts the minimality of m. By (1) and Lemma 25, the elements of I′ map the same

number of r-predicate terms to T as those in I do. Thus it suffices to prove that the interpretations in Ĩ map fewer

r-predicate terms to T than those in I′. By the freeness of S and our assumption on Ĩ, the number of r-predicate terms

mapped to T by both interpretations in Ĩ is obtained by adding up the number of occurrences of r, T on headS(Ĩ)

to those on either tail of Ĩ, and subtracting the number of r-predicate terms mapped to T occurring on both tails

of Ĩ. The analogous assertion holds for I′. Clearly headS(Ĩ) has fewer occurrences of r, T than headS(I
′) has. Since I′

and Ĩ have the same tails, it thus remains only to prove that the same number of r-predicate terms mapping to T
occur on both tailS(I

′, i′) and tailS(I
′, j′) after headS(I

′) as after headS(Ĩ), and this follows from Proposition 11, since

replacing the prefix headS(I
′) by headS(Ĩ) preserves equalities between predicate terms occurring along tailS(I

′, i′)
and tailS(I

′, j′). �

We now use Lemma 28 to prove the existence of a pu-couple where membership of the predicate p in NS(u) is witnessed

by iteration of Conditions (1) and (4) of Definition 17.

Lemma 29. Let S be a special schema. Let u, v ∈ V and p ∈ Preds(S). Suppose that there exists an assignment to v in the body

or in one part of p in S and that there exists a terminal path-segment σ in S such that for some G ∈ F∗,M[[σ ]]e(u) is a vG-term.

Then there exists a pu-couple for S.

Proof. Let T be the schema S if q(u) then u := g1(); else u := g2();, where q, g1, g2 are distinct symbols not occurring in S.

Clearly T is special and the path-segment σ v-feeds p to q in T . The result follows from Lemma 28 applied to T . �

Wenowuse thepreceding two Lemmas to show that every symbol ofNS(u) for a special schema S can affect the semantics

of S.

Theorem 30. Let S be a special schema. Let u ∈ V .



S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496 495

(1) For all p ∈ NS(u) ∩ P there exists a pu-couple for S.

(2) For all f (l) ∈ NS(u) ∩ F(L), either there exists an interpretation i such that the term M[[S]]ie(u) contains the symbol f , or

there exists p ∈ NS(u) ∩ P such that there exists a p(t)u-couple for S for some vector term t containing f .

Proof. Let � be the set of all predicates p in S such that there exists a pu-couple for S and let P = NS(u) ∩ P .

(1) Observe that from Conditions (1, 3, and 4) of Definition 17, P is the minimal subset of Preds(S) satisfying the following

two conditions.
• If p ∈ Preds(S) and p ↘S f (l) for a labelled function symbol f (l) and there exists a terminal f (l)Fu-path-segment

for some F ∈ F(L)∗, then p ∈ P holds.

• If p ∈ Preds(S) and p ↘S f (l) for a labelled function symbol f (l) and q ∈ P and S contains an f (l)Fq-path-segment

for some F ∈ F(L)∗, then p ∈ P.

By Lemmas 29 and 28, respectively, � also satisfies both these conditions; hence P ⊆ �, as required.

(2) If f (l) ∈ NS(u) ∩ F(L), then from Definition 17, one of the following two possibilities must occur.

• There exists an f (l)Fu-path-segment for some F ∈ F(L)∗, in which case by the freeness of S there exists an interpre-

tation i such that the termM[[S]]ie(u) contains the symbol f , as required.

• The schema S contains an f (l)Fp-path-segment for some F ∈ F(L)∗ and p ∈ P ⊆ � holds by Part (1) of this Theorem,

in which case by Lemma 22, there exists a p(t)u-couple for S for some vector term t one of whose components is

an fF-term, proving the result. �

The main theorem of the paper follows.

Theorem 31. Let S be a special schema. Let u ∈ V and let T be a subschema of S.

(1) If SymbolsL(T) = NS(u) then T is a u-slice of S.

(2) If T is a u-slice of S, then T contains at least one occurrence of every symbol inNS(u). In particular, if SymbolsL(T) = NS(u),
then no subschema T ′ of T satisfying T ′ 
= T is a u-slice of S unless there exists f ∈ Funcs(T) such that T contains at least

two occurrences of f and T ′ contains at least one, but not all occurrences of f lying in T.

Proof. Part (1) is a restatement of Theorem18 for the subclass of special schemas. Part (2) follows immediately fromTheorem

30 and Proposition 20, and the definition of a u-slice. �

9. Weiser’s algorithm does not give minimal ω-slices for special schemas

Theorems 30 and Part (2) of Theorem 31 do not hold if the variable u is replaced by ω. To see this, consider the special

schema S of Fig. 6. By iterating Conditions (2, 3, and 4) of Definition 17, it follows that NS(ω) contains both occurrences of

each of f , g1, g2 and hence also contains p and c, but we now show that there is no pω-couple for S. For suppose that {i, j}
is a pω-couple for S, and so i and j define paths passing different ways through p. Let � = {πS(i, e), πS(j, e)}. Observe that

one path in � defines the same predicate term on the second occasion that it passes through q as the other does on the first

occasion, and that if n ≥ 3, the two paths in � define the same predicate term on the nth occasion that they pass through q.

Thus suppose that one path terminates after passing m times through q. If m ∈ {1, 2}, then the other also terminates after

passing not more than 3−m times through q. Ifm ≥ 3, then so does the other after passing not more thanm times through

q, giving a contradiction. Thus Part (1) of Theorem 30 is false in this case, and hence it follows easily that the subschema of

S obtained by deleting the assignment x := c(); is an ω-slice.

10. Conclusions and suggestions for further work

Wehave shown that for any variableu anda special schema S, the subschema T of S containing the set of predicate symbols

and labelled function symbols in the ‘Weiser set’NS(u), and no others, has theminimal set of predicate and function symbols

of any u-slice of S.

This leaves open the possibility that there exists a subschema of T that is a u-slice of S and has fewer, but still non-zero,

occurrences of some of the function symbols occurring with labels in NS(u). It is not clear whether an example of a special

schema exists with this property. Further research should investigate this problem. However if S is not special, this can

certainly happen, as the example of the free and predicate-linear but non-liberal schema in Fig. 3 shows.

For u = ω, we have shown that the corresponding result fails, as the special schema is shown in Fig. 6. The existence

of this special schema does, however, show the strengthening of our main result compared to that of [4]. Further work

will also concentrate on obtaining minimal u-slices for larger classes of schemas. In particular, it would be of interest to be

able to effectively characterise minimal slices for a reasonable class of schemas containing those in Figs. 3 and 4, which are

near-liberal but not liberal. Danicic et al. [5] gives a related decidability result for schema equivalence. In addition, the main



496 S. Danicic et al. / Journal of Logic and Algebraic Programming 80 (2011) 481–496

theorem of the paper can almost certainly be generalised to allow slicing criteria according to which the value of a given

variable at a particular point within a program must be preserved by a slice, rather than at the end.

Acknowledgements

This work was supported by a grant from the Engineering and Physical Sciences Research Council, Grant EP/E002919/1.

References

[1] E.A. Ashcroft, Z. Manna, Translating program schemas to while-schemas, SIAM J. Comput. 4 (2) (1975) 125–146.

[2] D.W. Binkley, K.B. Gallagher, Program slicing, in: M. Zelkowitz (Ed.), Advances in Computing, vol. 43, Academic Press, 1996, pp. 1–50.
[3] S. Danicic, Dataflow minimal slicing, Ph.D. Thesis, University of North London, UK, School of Informatics, April 1999.

[4] S. Danicic, C. Fox, M. Harman, R. Hierons, J. Howroyd, M.R. Laurence, Static program slicing algorithms are minimal for free liberal program schemas,
Comput. J. 48 (6) (2005) 737–748.

[5] S. Danicic, R.M. Hierons, M.R. Laurence, Decidability of strong equivalence for subschemas of linear, free, near-liberal program schemas, J. Logic Algebr.
Programming 80 (2011) 92–112.

[6] S. Greibach, Theory of program structures: schemes, semantics, verification, in: Lecture Notes in Computer Science, vol. 36, Springer-Verlag Inc., New York,

NY, USA, 1975
[7] H.B. Hunt, R.L. Constable, S. Sahni, On the computational complexity of program scheme equivalence, SIAM J. Comput. 9 (2) (1980) 396–416.

[8] Y.I. Ianov, The logical schemes of algorithms, in: Problems of Cybernetics, vol. 1, Pergamon Press, New York, 1960, pp. 82–140.
[9] M.R. Laurence, Characterising minimal semantics-preserving slices of function-linear, free, liberal program schemas, J. Logic Algebr. Programming 72 (2)

(2005) 157–172.
[10] M.R. Laurence, S. Danicic, M. Harman, R. Hierons, J. Howroyd, Equivalence of conservative, free, linear program schemas is decidable, Theoret. Comput. Sci.

290 (2003) 831–862.

[11] M.R. Laurence, S. Danicic, M. Harman, R. Hierons, J. Howroyd, Equivalence of linear, free, liberal, structured program schemas is decidable in polynomial
time, Tech. Rep. ULCS-04-014, University of Liverpool, 2004. Available from: <http://www.csc.liv.ac.uk/research/techreports/>.

[12] Z. Manna, Mathematical Theory of Computation, McGraw-Hill, 1974.
[13] M.S. Paterson, Equivalence problems in a model of computation, Ph.D. Thesis, University of Cambridge, UK, 1967.

[14] J.D. Rutledge, On Ianov’s program schemata, J. ACM 11 (1) (1964) 1–9.
[15] V.K. Sabelfeld, An algorithm for deciding functional equivalence in a new class of program schemes, J. Theoret. Comput. Sci. 71 (1990) 265–279.

[16] F. Tip, A survey of program slicing techniques, Tech. Rep. CS-R9438, Centrum voor Wiskunde en Informatica, Amsterdam, 1994.

[17] M. Weiser, Program slices: formal, psychological, and practical investigations of an automatic program abstraction method, Ph.D. Thesis, University of
Michigan, Ann Arbor, MI, 1979.

http://www.csc.liv.ac.uk/research/techreports/

	Characterizing minimal semantics-preserving slices of predicate-linear, free, liberal program schemas
	1 Introduction
	1.1 Organisation of the paper
	1.2 Relevance of schema theory to program slicing
	1.3 Different classes of schemas
	1.4 Previous results on the decidability of schema equivalence

	2 Basic definitions for schemas
	2.1 Paths through a schema
	2.2 Semantics of schemas

	3 Free and liberal schemas
	4 Subschemas and slicing conditions
	5 The data dependence relations  and  and Weiser's labelled symbol set
	6 Couples of interpretations
	7 Restriction to special schemas
	8 Main theorems
	9 Weiser's algorithm does not give minimal -slices for special schemas
	10 Conclusions and suggestions for further work
	Acknowledgements
	References


